A101365 In the interior of a regular n-gon with all diagonals drawn, the number of points where exactly five diagonals intersect.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 180, 0, 0, 0, 0, 0, 216, 0, 0, 0, 0, 0, 546, 0, 0, 0, 0, 0, 336, 0, 0, 0, 0, 0, 648, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 990, 0, 0, 0, 0, 0, 936, 0, 0, 0, 0, 0, 1404, 0, 0, 0, 0, 0, 2352, 0, 0, 0, 0, 0, 1890, 0, 0, 0, 0
Offset: 3
Keywords
Examples
a(18)=54 because inside a regular 18-gon there are 54 points (3 on each radius) where exactly five diagonals intersect.
Links
- Seiichi Manyama, Table of n, a(n) for n = 3..10000 (terms 3..210 from Graeme McRae)
- Sequences formed by drawing all diagonals in regular polygon
Crossrefs
A column of A292105.
Cf. A000332: C(n, 4) = number of intersection points of diagonals of convex n-gon.
Cf. A006561: number of intersections of diagonals in the interior of regular n-gon.
Cf. A101363: number of 3-way intersections in the interior of a regular 2n-gon.
Cf. A101364: number of 4-way intersections in the interior of a regular n-gon.
Cf. A137938: number of 4-way intersections in the interior of a regular 6n-gon.
Cf. A137939: number of 5-way intersections in the interior of a regular 6n-gon.
Comments