cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101411 Denominator when the numerator of the continued fraction rational approximation of sqrt(2) is prime. Also the denominators of A086395(n).

This page as a plain text file.
%I A101411 #5 Dec 27 2024 13:43:06
%S A101411 2,5,12,29,169,408,470832,6625109,44560482149,345869461223138161,
%T A101411 13558774610046711780701,
%U A101411 87275373599917999482560755526644279276078854297832438763690789
%N A101411 Denominator when the numerator of the continued fraction rational approximation of sqrt(2) is prime. Also the denominators of A086395(n).
%t A101411 Select[Convergents[Sqrt[2],200],PrimeQ[Numerator[#]]&]//Denominator (* _Harvey P. Dale_, Dec 27 2024 *)
%o A101411 (PARI) cfracnum(m,f) = { local(x,r,cfr,i,m1); default(realprecision,3000); numer2=0; denom2=0; cfr = vector(m+100); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cfr[n+1] = i; ); for(m1=0,m, r=cfr[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cfr[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer),print1(denom",")); ); default(realprecision,28);
%Y A101411 Cf. A086395.
%K A101411 frac,nonn
%O A101411 1,1
%A A101411 _Cino Hilliard_, Jan 15 2005