A101418 Floor of the area of a lens constructed using circular arcs of radius n.
1, 4, 11, 19, 30, 44, 60, 78, 99, 122, 148, 176, 207, 240, 276, 314, 354, 397, 443, 491, 541, 594, 649, 707, 767, 830, 895, 963, 1033, 1105, 1180, 1257, 1337, 1419, 1504, 1591, 1681, 1773, 1868, 1965, 2064, 2166, 2271, 2378, 2487, 2599, 2713, 2830, 2949
Offset: 1
Keywords
Examples
a(2) = 4 because a lens given by the intersection of two circles of radius two has an area of approximately 4.91347...
Links
- Eric Weisstein's World of Mathematics, Lens
Crossrefs
Cf. A093731.
Programs
-
Mathematica
Table[Floor[(4*Pi - 3*Sqrt[3])/6*r^2], {r, 1, 60}]
-
PARI
a(n)=(4*Pi-sqrt(27))*n^2\6 \\ Charles R Greathouse IV, Nov 27 2016
Formula
a(n) = floor((4*Pi - 3*sqrt(3))/6*n^2).