A101428 Number of ways to write n as an ordered sum of a triangular number (A000217) and a square (A000290).
1, 2, 1, 1, 2, 1, 1, 2, 0, 1, 3, 1, 1, 0, 1, 2, 2, 1, 0, 3, 0, 1, 2, 0, 1, 2, 2, 0, 2, 1, 1, 2, 1, 0, 0, 1, 2, 4, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 0, 2, 1, 1, 2, 1, 1, 2, 1, 1, 0, 2, 0, 2, 0, 0, 4, 1, 1, 2, 0, 0, 4, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 2, 3, 0, 1, 2, 0, 2, 0, 0, 0, 4, 2, 0, 2, 1, 1, 0, 0, 0, 3, 1, 2, 2, 1
Offset: 0
Examples
Examples: n=1 gives the a(1)=2 cases 1=1+0=0+1; a(26)=2 because 26=25+1=16+10.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A000217 := proc(n) n*(n+1)/2 ; end: A101428 := proc(n) local a,y,t ; a := 0 ; for y from 0 do t := A000217(y) ; if n-t < 0 then RETURN(a) ; else if issqr(n-t) then a := a+1 ; fi; fi; od: end: for n from 0 to 100 do printf("%a,",A101428(n)) ; od:
-
Mathematica
t = FoldList[#1 + #2 &, 0, Range@ 15]; s = Range[0, 10]^2, a = Sort@ Flatten@ Table[ s[[j]] + t[[k]], {j, 15}, {k, 11}]; Table[Count[a, n], {n, 0, 104}] (* or *) triQ[n_] := IntegerQ@ Sqrt[8n + 1]; f[n_] := Block[{c = k = 0, lmt = 2 + Floor[Sqrt[n]]}, While[k < lmt, If[ triQ[n - k^2], c++]; k++]; c]; Array[f, 105, 0] (* Robert G. Wilson v, Mar 30 2014 *)
Formula
G.f.: sum(i>=0, x^(i^2) ) * sum(i>=0, x^(i*(i+1)/2) ). - Ralf Stephan, May 17 2014
Comments