cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101448 Nonnegative numbers k such that 2k + 11 is prime.

This page as a plain text file.
%I A101448 #50 Jun 25 2025 18:04:47
%S A101448 0,1,3,4,6,9,10,13,15,16,18,21,24,25,28,30,31,34,36,39,43,45,46,48,49,
%T A101448 51,58,60,63,64,69,70,73,76,78,81,84,85,90,91,93,94,100,106,108,109,
%U A101448 111,114,115,120,123,126,129,130,133,135,136,141,148,150,151,153,160,163
%N A101448 Nonnegative numbers k such that 2k + 11 is prime.
%C A101448 2 is the smallest single-digit prime and 11 is the smallest two-digit prime.
%H A101448 Shawn A. Broyles, <a href="/A101448/b101448.txt">Table of n, a(n) for n = 1..1000</a>
%e A101448 If n=1, then 2*1 + 11 = 13 (prime).
%e A101448 If n=49, then 2*49 + 11 = 109 (prime).
%e A101448 If n=69, then 2*69 + 11 = 149 (prime).
%p A101448 select(k-> isprime(11+2*k), [$0..200])[];  # _Alois P. Heinz_, Jun 02 2022
%t A101448 Select[Range[0, 200], PrimeQ[2# + 11] &] (* _Stefan Steinerberger_, Feb 28 2006 *)
%o A101448 (Magma) [n: n in [0..200] | IsPrime(2*n+11)]; // _Vincenzo Librandi_, Nov 17 2010
%o A101448 (PARI) is(n)=isprime(2*n+11) \\ _Charles R Greathouse IV_, Apr 29 2015
%o A101448 (Sage) [n for n in (0..200) if is_prime(2*n+11) ] # _G. C. Greubel_, May 21 2019
%o A101448 (GAP) Filtered([0..200], k-> IsPrime(2*k+11) ); # _G. C. Greubel_, May 21 2019
%Y A101448 Cf. A101123, A101086.
%Y A101448 Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), this seq (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
%Y A101448 Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
%K A101448 easy,nonn
%O A101448 1,3
%A A101448 _Parthasarathy Nambi_, Jan 24 2005
%E A101448 More terms from _Stefan Steinerberger_, Feb 28 2006
%E A101448 Definition clarified by _Zak Seidov_, Jul 11 2014