cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101477 Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to +-1, with n nodes that have no label greater than k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 2, 7, 12, 1, 2, 8, 31, 56, 1, 2, 8, 39, 156, 288, 1, 2, 8, 40, 211, 851, 1584, 1, 2, 8, 40, 223, 1219, 4909, 9152, 1, 2, 8, 40, 224, 1327, 7371, 29506, 54912, 1, 2, 8, 40, 224, 1343, 8250, 46099, 183043, 339456, 1, 2, 8, 40, 224, 1344, 8427, 52938, 295915, 1164387, 2149888
Offset: 0

Views

Author

Ralf Stephan, Jan 21 2005

Keywords

Examples

			1, 1, 3, 12,  56,  288, 1584,  9152,  54912,  339456, ...
1, 2, 7, 31, 156,  851, 4909, 29506, 183043, 1164387, ...
1, 2, 8, 39, 211, 1219, 7371, 46099, 295915, 1939395, ...
1, 2, 8, 40, 223, 1327, 8250, 52938, 347941, 2330532, ...
1, 2, 8, 40, 224, 1343, 8427, 54625, 362833, 2456261, ...
1, 2, 8, 40, 224, 1344, 8447, 54887, 365688, 2484384, ...
1, 2, 8, 40, 224, 1344, 8448, 54911, 366051, 2488831, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366079, 2489311, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489343, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, ...
		

Crossrefs

Rows converge to A052701. First row is A000257.

Programs

  • Mathematica
    nmax = 11;
    b[x_] = Sum[2^(n - 1)*(2*n - 2)!/(n - 1)!/n! x^n, {n, 1, nmax}];
    c[x_] = 0; Do[c[x_] = x*(1 + c[x])^4/(1 + c[x]^2) + O[x]^nmax, {nmax}];
    a[n_, t_] := a[n, t] = b[t]*(1 - c[t]^(n + 1))*(1 - c[t]^(n + 5))/((1 - c[t]^(n + 2))*(1 - c[t]^(n + 4)));
    T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
    Table[T[n - k, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

Formula

G.f. of k-th row: A(t)=B(t)*(1-C(t)^(k+1))*(1-C(t)^(k+5))/[(1-C(t)^(k+2))*(1-C(t)^(k+4))], with tB(t) the g.f. of A052701 and C(t) the g.f. of A101478.