A101486 Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to -1,0,1, with n nodes that have no label greater than k.
1, 1, 2, 1, 3, 9, 1, 3, 17, 54, 1, 3, 18, 119, 378, 1, 3, 18, 134, 932, 2916, 1, 3, 18, 135, 1111, 7838, 24057, 1, 3, 18, 135, 1133, 9833, 69275, 208494, 1, 3, 18, 135, 1134, 10176, 90959, 635279, 1876446, 1, 3, 18, 135, 1134, 10205, 95635, 868827, 5994584, 222646205
Offset: 0
Examples
1,2,9,54,378,2916,24057,208494,1876446,17399772, 1,3,17,119,932,7838,69275,635279,5994584,57872666, 1,3,18,134,1111,9833,90959,868827,8504314,84866778, 1,3,18,135,1133,10176,95635,928442,9236144,93646430, 1,3,18,135,1134,10205,96191,937361,9365984,95427597, 1,3,18,135,1134,10206,96227,938179,9381050,95673739, 1,3,18,135,1134,10206,96228,938222,9382179,95697199, 1,3,18,135,1134,10206,96228,938223,9382229,95698688,
Links
- M. Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
Programs
-
Mathematica
nmax = 9; b[t_] = 2/(1 + Sqrt[1 - 12t]) + O[t]^(nmax+1); c[t_] = (1 + Sqrt[1 - 12t] - t (8 + Sqrt[2] Sqrt[(1 + Sqrt[1 - 12t] - 2 (7 + 4 Sqrt[1 - 12t]) t + 24t^2)/t^2]))/(4t) + O[t]^(nmax+1) // Simplify[#, t > 0]&; a[n_, t_] := a[n, t] = b[t] (1 - c[t]^(n + 1)) (1 - c[t]^(n + 4))/((1 - c[t]^(n+2)) (1 - c[t]^(n+3))) + O[t]^(nmax+1) // Simplify[#, t > 0]&; T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}]; Table[T[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
Comments