cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101486 Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to -1,0,1, with n nodes that have no label greater than k.

Original entry on oeis.org

1, 1, 2, 1, 3, 9, 1, 3, 17, 54, 1, 3, 18, 119, 378, 1, 3, 18, 134, 932, 2916, 1, 3, 18, 135, 1111, 7838, 24057, 1, 3, 18, 135, 1133, 9833, 69275, 208494, 1, 3, 18, 135, 1134, 10176, 90959, 635279, 1876446, 1, 3, 18, 135, 1134, 10205, 95635, 868827, 5994584, 222646205
Offset: 0

Views

Author

Ralf Stephan, Jan 21 2005

Keywords

Comments

Rows converge to A005159.
First row is A000168.

Examples

			1,2,9,54,378,2916,24057,208494,1876446,17399772,
1,3,17,119,932,7838,69275,635279,5994584,57872666,
1,3,18,134,1111,9833,90959,868827,8504314,84866778,
1,3,18,135,1133,10176,95635,928442,9236144,93646430,
1,3,18,135,1134,10205,96191,937361,9365984,95427597,
1,3,18,135,1134,10206,96227,938179,9381050,95673739,
1,3,18,135,1134,10206,96228,938222,9382179,95697199,
1,3,18,135,1134,10206,96228,938223,9382229,95698688,
		

Crossrefs

Programs

  • Mathematica
    nmax = 9;
    b[t_] = 2/(1 + Sqrt[1 - 12t]) + O[t]^(nmax+1);
    c[t_] = (1 + Sqrt[1 - 12t] - t (8 + Sqrt[2] Sqrt[(1 + Sqrt[1 - 12t] - 2 (7 + 4 Sqrt[1 - 12t]) t + 24t^2)/t^2]))/(4t) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
    a[n_, t_] := a[n, t] = b[t] (1 - c[t]^(n + 1)) (1 - c[t]^(n + 4))/((1 - c[t]^(n+2)) (1 - c[t]^(n+3))) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
    T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
    Table[T[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

Formula

G.f. of k-th row: A(t)=B(t)*(1-C(t)^(k+1))*(1-C(t)^(k+4))/[(1-C(t)^(k+2))*(1-C(t)^(k+3))], with B(t) the g.f. of A005159 and C(t) the g.f. of A101487.