cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A101489 Square array T(n,k), read by antidiagonals: number of binary trees, with n nodes that have no label greater than k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 4, 1, 1, 2, 5, 10, 10, 1, 1, 2, 5, 13, 26, 26, 1, 1, 2, 5, 14, 37, 73, 73, 1, 1, 2, 5, 14, 41, 109, 213, 213, 1, 1, 2, 5, 14, 42, 126, 334, 645, 645, 1, 1, 2, 5, 14, 42, 131, 398, 1050, 2007, 2007, 1, 1, 2, 5, 14, 42, 132, 422, 1289, 3377, 6391, 6391
Offset: 0

Views

Author

Ralf Stephan, Jan 21 2005

Keywords

Examples

			1, 1, 1, 2,  4, 10,  26,  73,  213,  645, ...
1, 1, 2, 4, 10, 26,  73, 213,  645, 2007, ...
1, 1, 2, 5, 13, 37, 109, 334, 1050, 3377, ...
1, 1, 2, 5, 14, 41, 126, 398, 1289, 4253, ...
1, 1, 2, 5, 14, 42, 131, 422, 1390, 4664, ...
1, 1, 2, 5, 14, 42, 132, 428, 1422, 4812, ...
1, 1, 2, 5, 14, 42, 132, 429, 1429, 4853, ...
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, ...
		

Crossrefs

Rows converge to A000108. First row is A101488.
Cf. A101490.

Programs

  • Mathematica
    nmax = 11;
    b[t_] = Sum[Binomial[2n, n]/(n + 1) t^n, {n, 0, nmax}] ;
    c[t_] = 1; Do[c[t_] = t (1 + c[t]^2)^2/(1 - c[t] + c[t]^2) + O[t]^(nmax + 1), {nmax + 1}];
    a[n_, t_] := a[n, t] = b[t] (1 - c[t]^(n + 2)) ((1 - c[t]^(n + 7))/((1 - c[t]^(n + 4)) (1 - c[t]^(n + 5)))) + O[t]^(nmax + 1);
    T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
    Table[T[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

Formula

G.f. of k-th row: A(t) = B(t)*(1-C(t)^(k+2))*(1-C(t)^(k+7))/((1-C(t)^(k+4))*(1-C(t)^(k+5))), with B(t) the g.f. of A000108 and C(t) the g.f. of A101490.
Showing 1-1 of 1 results.