cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101493 Triangle read by rows: T(n,k) = (n+1)*(2*(n+1)-1) - k*(2*k-1).

This page as a plain text file.
%I A101493 #16 Mar 07 2019 21:53:02
%S A101493 1,6,5,15,14,9,28,27,22,13,45,44,39,30,17,66,65,60,51,38,21,91,90,85,
%T A101493 76,63,46,25,120,119,114,105,92,75,54,29,153,152,147,138,125,108,87,
%U A101493 62,33,190,189,184,175,162,145,124,99,70,37,231,230,225,216,203,186,165,140,111,78,41
%N A101493 Triangle read by rows: T(n,k) = (n+1)*(2*(n+1)-1) - k*(2*k-1).
%C A101493 The triangle is generated from the product B*A of the infinite lower triangular matrices A =
%C A101493   1  0  0  0 ...
%C A101493   1  1  0  0 ...
%C A101493   1  1  1  0 ...
%C A101493   1  1  1  1 ...
%C A101493   ... and B =
%C A101493   1  0  0  0 ...
%C A101493   1  5  0  0 ...
%C A101493   1  5  9  0 ...
%C A101493   1  5  9 13 ...
%C A101493   ...
%C A101493 T(n+0,0) = n*(2*n-1) = A000384(n) (Hexagonal numbers)
%C A101493 since T(n,n) = 4*n+1 = A016813(n).
%C A101493 T(n,n) = 4*n + 1 = A016813(n);
%C A101493 T(n+1,n) = 8*n + 6 = A017137(n);
%C A101493 T(n+2,n) = 12*n + 3 = A017557(n);
%C A101493 T(n,n)*T(n,0) = (n+1)*(2*n+1)*(4*n+1) = A079588(n).
%H A101493 Muniru A Asiru, <a href="/A101493/b101493.txt">Rows n = 0..150 of triangle, flattened</a>
%e A101493 Triangle begins:
%e A101493    1;
%e A101493    6,  5;
%e A101493   15, 14,  9;
%e A101493   28, 27, 22, 13;
%e A101493   45, 44, 39, 30, 17;
%e A101493   66, 65, 60, 51, 38, 21;
%o A101493 (PARI) T(n,k)=if(k>n,0,(n+1)*(2*(n+1)-1)-k*(2*k-1))
%o A101493 for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())
%o A101493 (GAP) Flat(List([0..10],n->List([0..n],k->(n+1)*(2*n+1)-k*(2*k-1)))); # _Muniru A Asiru_, Mar 05 2019
%Y A101493 Row sums give 10-gonal pyramidal numbers: n(n+1)(8n-5)/6 = A007585(n+1).
%Y A101493 Cf. A101492 (for product A*B), A007585, A000384.
%K A101493 nonn,tabl
%O A101493 0,2
%A A101493 Lambert Klasen (lambert.klasen(AT)gmx.de) and _Gary W. Adamson_, Jan 21 2005