This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101509 #47 Dec 23 2024 14:53:42 %S A101509 1,3,7,16,35,75,159,334,696,1442,2976,6123,12562,25706,52492,107014, %T A101509 217877,443061,899957,1826078,3701783,7498261,15178255,30706320, %U A101509 62085915,125465715,253415981,511608490,1032427637,2082680887,4199956101,8467124805,17064784905,34382825363,69256687719,139465867773 %N A101509 Binomial transform of tau(n) (see A000005). %C A101509 Row sums of A101508. %C A101509 Also: Number of matrices with positive integer coefficients such that the sum of all entries equals n+1, cf. link "Partitions and A101509". - _M. F. Hasler_, Jan 14 2009 %H A101509 M. F. Hasler, <a href="/A101509/b101509.txt">Table of n, a(n) for n = 0..500</a> %H A101509 L. Manor, M. F. Hasler, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2009-January/000522.html">Partitions and A101509. SeqFan list, Jan 14 2009</a> %H A101509 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A101509 a(n) = Sum_{k=0..n, Sum_{i=0..n, if(mod(i+1, k+1)=0, binomial(n, i), 0)}}. %F A101509 G.f.: 1/x * Sum_{n>=1} z^n/(1-z^n) (Lambert series) where z=x/(1-x). - _Joerg Arndt_, Jan 30 2011 %F A101509 a(n) ~ 2^n * (log(n/2) + 2*gamma), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Mar 07 2020 %e A101509 From _Gus Wiseman_, Jan 16 2019: (Start) %e A101509 The a(3) = 16 ways to arrange the parts of an integer partition of 4 into a matrix: %e A101509 [4] [1 3] [3 1] [2 2] [1 1 2] [1 2 1] [2 1 1] [1 1 1 1] %e A101509 . %e A101509 [1] [3] [2] [1 1] %e A101509 [3] [1] [2] [1 1] %e A101509 . %e A101509 [1] [1] [2] %e A101509 [1] [2] [1] %e A101509 [2] [1] [1] %e A101509 . %e A101509 [1] %e A101509 [1] %e A101509 [1] %e A101509 [1] %e A101509 (End) %p A101509 bintr:= proc(p) proc(n) add(p(k) *binomial(n, k), k=0..n) end end: %p A101509 a:= bintr(n-> numtheory[tau](n+1)): %p A101509 seq(a(n), n=0..40); # _Alois P. Heinz_, Jan 30 2011 %t A101509 a[n_] := Sum[DivisorSigma[0, k+1]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 18 2017 *) %o A101509 (PARI) A101509(n) = sum( k=0,n, numdiv(k+1)*binomial(n,k)) \\ _M. F. Hasler_, Jan 14 2009 %Y A101509 Cf. A000005 (tau), A101508, A160399. %Y A101509 Cf. A000219, A047966, A053529, A319066, A323300, A323301, A323307, A323429. %K A101509 easy,nonn %O A101509 0,2 %A A101509 _Paul Barry_, Dec 05 2004