cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101603 Riordan array (1/(1-x^2), x(1+x)/(1-x)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 0, 3, 4, 1, 1, 4, 9, 6, 1, 0, 5, 16, 19, 8, 1, 1, 6, 25, 44, 33, 10, 1, 0, 7, 36, 85, 96, 51, 12, 1, 1, 8, 49, 146, 225, 180, 73, 14, 1, 0, 9, 64, 231, 456, 501, 304, 99, 16, 1, 1, 10, 81, 344, 833, 1182, 985, 476, 129, 18, 1, 0, 11, 100, 489, 1408, 2471, 2668
Offset: 0

Views

Author

Paul Barry, Dec 08 2004

Keywords

Examples

			Rows start
   1;
   0, 1;
   1, 2,  1;
   0, 3,  4,  1;
   1, 4,  9,  6, 1;
   0, 5, 16, 19, 8, 1;
		

Crossrefs

Cf. A119328 (row-reversed).
Row sums are A097076(n+1).
Diagonal sums are abs(A077902).

Programs

  • Mathematica
    t[n_, k_] := Binomial[n+k, k]*Hypergeometric2F1[-k+1, -n, -n-k, -1]; Table[t[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2013 *)

Formula

Columns are generated by x^k*(1+x)^(k-1)/(1-x)^(k+1).
T(n, k) = Sum_{j=0..n-k} C(k-1, j)*C(n-j, n-k-j).
T(n, k) = (n - k + 1)*hypergeom([1 - k, k - n], [2], 2). - Peter Luschny, Mar 09 2022