cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101617 The trinomial transform (A027907) gives powers of 3, while the trinomial transform of this sequence shift one place left gives powers of 5.

This page as a plain text file.
%I A101617 #12 Apr 18 2020 00:02:17
%S A101617 1,1,1,3,-3,19,-43,139,-355,995,-2587,6907,-17939,46931,-121419,
%T A101617 314603,-811203,2091459,-5379963,13833179,-35527795,91210035,
%U A101617 -234020267,600258507,-1539135779,3945762211,-10113490139,25918908603,-66417608403,170182721299,-436032111883,1117120911019
%N A101617 The trinomial transform (A027907) gives powers of 3, while the trinomial transform of this sequence shift one place left gives powers of 5.
%F A101617 G.f.: A(x) = (1 + 3*x - 2*x^2 - 6*x^3)/(1 + 2*x - 5*x^2 - 6*x^3 + 8*x^4). [corrected by _Georg Fischer_, Apr 17 2020]
%F A101617 3^n = Sum_{k=0..2*n} A027907(n, k)*a(k) for n>=0 and
%F A101617 5^n = Sum_{k=0..2*n} A027907(n, k)*a(k+1) for n>=0.
%F A101617 a(n) = (-1)^n*A006131(n-1) + (1/3)[(-2)^n + 2]. - _Ralf Stephan_, May 16 2007
%e A101617 3^3 = 1*(1) + 3*(1) + 6*(1) + 7*(3) + 6*(-3) + 3*(19) + 1*(-43).
%e A101617 5^3 = 1*(1) + 3*(1) + 6*(3) + 7*(-3) + 6*(19) + 3*(-43) + 1*(139).
%e A101617 In general, a sequence A with the property that the
%e A101617 trinomial transform of A gives powers of P, while the
%e A101617 trinomial transform of LSHIFT(A) gives powers of Q
%e A101617 has the g.f.: N(x)/D(x) where
%e A101617 N(x)=(1+3*x-(Q-3)*x^2-(P+Q-2)*x^3) and
%e A101617 D(x)=(1+2*x-(P+Q-3)*x^2-(P+Q-2)*x^3+(P-1)*(Q-1)*x^4).
%t A101617 nn:=31; CoefficientList[Series[(1 + 3*x - 2*x^2 - 6*x^3)/(1 + 2*x - 5*x
%t A101617 ^2 - 6*x^3 + 8*x^4),{x,0,nn}],x] (* _Georg Fischer_, Apr 17 2020 *)
%o A101617 (PARI) {a(n)=local(P=3,Q=5,V=[1,1]);if(n>1, for(m=1,n, V=concat(V,P^m-sum(k=0,2*m-1,polcoeff((1+x+x^2)^m+x*O(x^k),k)*V[k+1])); V=concat(V,Q^m-sum(k=0,2*m-1,polcoeff((1+x+x^2)^m+x*O(x^k),k)*V[k+2])); ));V[n+1]}
%o A101617 for(n=0,30,print1(a(n),", "))
%Y A101617 Cf. A027907, A100321.
%K A101617 sign
%O A101617 0,4
%A A101617 _Paul D. Hanna_, Dec 09 2004