A101625 A bisection of the Stern-Jacobsthal numbers.
0, 1, 1, 5, 1, 21, 17, 69, 1, 277, 273, 1349, 257, 5141, 4113, 16453, 1, 65813, 65809, 329029, 65793, 1381397, 1118225, 4538437, 65537, 18088213, 17826065, 88081733, 16777473, 335549461, 268439569, 1073758277, 1, 4295033109, 4295033105
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A002450.
Programs
-
Python
prpr = 0 prev = 1 for i in range(99): current = (prev)^(prpr*4) print(prpr, end=',') prpr = prev prev = current # Alex Ratushnyak, May 06 2012
Formula
a(n) = Sum_{k=0..n} (binomial(2n-k, k-1) mod 2)2^(k-1);
a(n) = A101624(2n+1).
a(0)=0, a(1)=1, a(n) = a(n-1) XOR (a(n-2)*4), where XOR is the bitwise exclusive-OR operator. - Alex Ratushnyak, May 06 2012
a(n+1) = Sum_{k=0..n} A106344(n,k)*4^(n-k). - Philippe Deléham, May 27 2012