This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101686 #87 Nov 04 2024 02:56:39 %S A101686 1,2,10,100,1700,44200,1635400,81770000,5315050000,435834100000, %T A101686 44019244100000,5370347780200000,778700428129000000, %U A101686 132379072781930000000,26078677338040210000000,5893781078397087460000000,1514701737148051477220000000 %N A101686 a(n) = Product_{i=1..n} (i^2 + 1). %C A101686 Sum of all coefficients in Product_{k=0..n} (x + k^2). %C A101686 Row sums of triangle of central factorial numbers (A008955). %C A101686 "HANOWA" is a matrix whose eigenvalues lie on a vertical line. It is an N X N matrix with 2 X 2 blocks with identity matrices in the upper left and lower right blocks and diagonal matrices containing the first N integers in the upper right and lower left blocks. In MATLAB, the following code generates the sequence... for n=0:2:TERMS*2 det(gallery('hanowa',n)) end. - _Paul Max Payton_, Mar 31 2005 %C A101686 Cilleruelo shows that a(n) is a square only for n = 0 and 3. - _Charles R Greathouse IV_, Aug 27 2008 %C A101686 a(n) = A231530(n)^2 + A231531(n)^2. - _Stanislav Sykora_, Nov 10 2013 %D A101686 Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 559-561, Section 147. - _N. J. A. Sloane_, May 29 2014 %H A101686 Stanislav Sykora, <a href="/A101686/b101686.txt">Table of n, a(n) for n = 0..252</a> %H A101686 Javier Cilleruelo, <a href="http://dx.doi.org/10.1016/j.jnt.2007.11.001">Squares in (1^2+1)...(n^2+1)</a>, Journal of Number Theory 128:8 (2008), pp. 2488-2491. %H A101686 Thang Pang Ern, <a href="https://arxiv.org/abs/2411.00012">Finding Squares in a Product of Squares</a>, arXiv:2411.00012 [math.NT], 2024. %H A101686 Erhan Gürela and Ali Ulas Özgür Kisisel, <a href="http://dx.doi.org/10.1016/j.jnt.2009.07.014">A note on the products (1^mu + 1)(2^mu + 1)···(n^mu + 1)</a>, Journal of Number Theory, Volume 130, Issue 1, January 2010, Pages 187-191. %H A101686 V. H. Moll, <a href="http://www.tulane.edu/~vhm/papers_html/xn-final.pdf">An arithmetic conjecture on a sequence of arctangent sums</a>, 2012. %F A101686 G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^2*x). - _Paul D. Hanna_, Jan 07 2013 %F A101686 G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - ((k+1)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 15 2013 %F A101686 a(n) ~ (n!)^2 * sinh(Pi)/Pi. - _Vaclav Kotesovec_, Nov 11 2013 %F A101686 From _Vladimir Reshetnikov_, Oct 25 2015: (Start) %F A101686 a(n) = Gamma(n+1+i)*Gamma(n+1-i)*sinh(Pi)/Pi. %F A101686 a(n) ~ 2*exp(-2*n)*n^(2*n+1)*sinh(Pi). %F A101686 G.f. for 1/a(n): hypergeom([1], [1-i, 1+i], x). %F A101686 E.g.f. for a(n)/n!: hypergeom([1-i, 1+i], [1], x), where i=sqrt(-1). %F A101686 D-finite with recurrence: a(0) = 1, a(n) = (n^2+1)*a(n-1). (End) %F A101686 a(n+3)/a(n+2) - 2 a(n+2)/a(n+1) + a(n+1)/a(n) = 2. - _Robert Israel_, Oct 25 2015 %F A101686 a(n) = A003703(n+1)^2 + A009454(n+1)^2. - _Vladimir Reshetnikov_, Oct 15 2016 %F A101686 a(n) = A105750(n)^2 + A105751(n)^2. - _Ridouane Oudra_, Dec 15 2021 %p A101686 p := n -> mul(x^2+1, x=0..n): %p A101686 seq(p(i), i=0..14); # _Gary Detlefs_, Jun 03 2010 %t A101686 Table[Product[k^2+1,{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Nov 11 2013 *) %t A101686 Table[Pochhammer[I, n + 1] Pochhammer[-I, n + 1], {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 25 2015 *) %t A101686 Table[Abs[Pochhammer[1 + I, n]]^2, {n, 0, 20}] (* _Vaclav Kotesovec_, Oct 16 2016 *) %o A101686 (PARI) a(n)=prod(k=1,n,k^2+1) \\ _Charles R Greathouse IV_, Aug 27 2008 %o A101686 (PARI) {a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j^2*x+x*O(x^n))), n))} \\ _Paul D. Hanna_, Jan 07 2013 %o A101686 (Python) %o A101686 from math import prod %o A101686 def A101686(n): return prod(i**2+1 for i in range(1,n+1)) # _Chai Wah Wu_, Feb 22 2024 %Y A101686 Equals 2 * A051893(n+1), n>0. Cf. A156648. %Y A101686 Cf. A255433, A255434, A255435, A003703, A009454. %Y A101686 Cf. A105750, A105751. %K A101686 nonn %O A101686 0,2 %A A101686 _Ralf Stephan_, Dec 13 2004 %E A101686 More terms from _Charles R Greathouse IV_, Aug 27 2008 %E A101686 Simpler definition from _Gary Detlefs_, Jun 03 2010 %E A101686 Entry revised by _N. J. A. Sloane_, Dec 22 2012 %E A101686 Minor edits by _Vaclav Kotesovec_, Mar 13 2015