A101690 Decimal expansion of the unique real number x whose Engel expansion is the Lucas sequence.
1, 4, 2, 9, 7, 1, 5, 9, 2, 2, 6, 8, 9, 2, 0, 4, 2, 0, 0, 2, 7, 7, 2, 3, 0, 6, 9, 2, 6, 2, 7, 1, 6, 5, 5, 3, 7, 4, 9, 6, 9, 4, 6, 7, 9, 9, 5, 8, 4, 5, 8, 1, 6, 6, 3, 6, 4, 2, 9, 7, 7, 4, 7, 1, 0, 4, 3, 4, 6, 5, 8, 2, 4, 7, 4, 3, 5, 8, 9, 0, 0, 1, 7, 2, 0, 7, 8, 9, 1, 8, 1, 9, 1, 3, 3, 1, 6, 6, 4, 0
Offset: 1
Examples
x = 1.4297159226892042002772306926271655374969467995845816636429774710...
Programs
-
Mathematica
Lucas[n_Integer?Positive] := Lucas[n] = Lucas[n-1] + Lucas[n-2]; Lucas[1] = 1; Lucas[2] = 3; N[Sum[1/Product[Lucas[i], {i, n}], {n, 500}], 100] digits = 100; Clear[x]; x[m_] := x[m] = N[Sum[1/Product[LucasL[i], {i, 1, n}], {n, 1, m}], digits+5]; m = 10; While[x[m] != x[m-1], m++]; RealDigits[x[m], 10, digits][[1]] (* Jean-François Alcover, Nov 20 2015 *)
Formula
x = Sum_{n >= 1} 1/(Product_{1 <= i <= n} L(i)), where L(i) is the i-th Lucas number.
Extensions
Offset corrected by Amiram Eldar, Nov 09 2020