This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101695 #42 Feb 16 2025 08:32:55 %S A101695 2,6,18,40,108,224,480,1296,2688,5632,11520,25600,53248,124416,258048, %T A101695 540672,1105920,2228224,4587520,9830400,19922944,40894464,95551488, %U A101695 192937984,396361728,822083584,1660944384,3397386240,6845104128 %N A101695 a(n) = n-th n-almost prime. %C A101695 A k-almost-prime is a positive integer that has exactly k prime factors, counted with multiplicity. %C A101695 This is the diagonalization of the set of sequences {j-almost prime(k)}. The cumulative sums of this sequence are in A101696. This is the diagonal just below A078841. %H A101695 Charles R Greathouse IV, <a href="/A101695/b101695.txt">Table of n, a(n) for n = 1..1000</a> (first 229 terms from Robert G. Wilson v) %H A101695 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Almost Prime</a>. %F A101695 Conjecture: lim_{ n->inf.} a(n+1)/a(n) = 2. - _Robert G. Wilson v_, Oct 07 2007, Nov 13 2007 %F A101695 Stronger conjecture: a(n)/(n * 2^n) is polylogarithmic in n. That is, there exist real numbers b < c such that (log n)^b < a(n)/(n * 2^n) < (log n)^c for large enough n. Probably b and c can be chosen close to 0. - _Charles R Greathouse IV_, Aug 28 2012 %e A101695 a(1) = first 1-almost prime = first prime = A000040(1) = 2. %e A101695 a(2) = 2nd 2-almost prime = 2nd semiprime = A001358(2) = 6. %e A101695 a(3) = 3rd 3-almost prime = A014612(3) = 18. %e A101695 a(4) = 4th 4-almost prime = A014613(4) = 40. %e A101695 a(5) = 5th 5-almost prime = A014614(5) = 108. %p A101695 A101695 := proc(n) %p A101695 local s,a ; %p A101695 s := 0 ; %p A101695 for a from 2^n do %p A101695 if numtheory[bigomega](a) = n then %p A101695 s := s+1 ; %p A101695 if s = n then %p A101695 return a; %p A101695 end if; %p A101695 end if; %p A101695 end do: %p A101695 end proc: # _R. J. Mathar_, Aug 09 2012 %t A101695 AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* _Eric W. Weisstein_, Feb 07 2006 *) %t A101695 AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n, n]], {n, 30}]; lst (* _Robert G. Wilson v_, Oct 07 2007 *) %o A101695 (Python) %o A101695 from math import prod, isqrt %o A101695 from sympy import primerange, primepi, integer_nthroot %o A101695 def A101695(n): %o A101695 if n == 1: return 2 %o A101695 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A101695 def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A101695 kmin, kmax = 1,2 %o A101695 while f(kmax) >= kmax: %o A101695 kmax <<= 1 %o A101695 while True: %o A101695 kmid = kmax+kmin>>1 %o A101695 if f(kmid) < kmid: %o A101695 kmax = kmid %o A101695 else: %o A101695 kmin = kmid %o A101695 if kmax-kmin <= 1: %o A101695 break %o A101695 return kmax # _Chai Wah Wu_, Aug 23 2024 %Y A101695 Cf. A000040, A001358, A014612, A014613, A046314, A046306, A046308, A046310, A046312, A046314, A069272, A069273, A069274, A069275, A069276, A069277, A069278, A069279, A069280, A069281, A101637, A101638, A101605, A101606. %K A101695 nonn %O A101695 1,1 %A A101695 _Jonathan Vos Post_, Dec 12 2004 %E A101695 a(21)-a(30) from _Robert G. Wilson v_, Feb 11 2006 %E A101695 a(12) corrected by _N. J. A. Sloane_, Nov 23 2007