This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101724 #15 Jan 17 2019 13:44:06 %S A101724 0,2,4,5,7,14,25,52,59,96,182,204,301,395,455,466,606,827,1859,2742, %T A101724 4272,4780,5711,6037,6636,9221,10831,18864,25847,42246,48546,87564, %U A101724 95587 %N A101724 Indices of primes in sequence defined by A(0) = 47, A(n) = 10*A(n-1) - 33 for n > 0. %C A101724 Numbers n such that (390*10^n + 33)/9 is prime. %C A101724 Numbers n such that digit 4 followed by n >= 0 occurrences of digit 3 followed by digit 7 is prime. %C A101724 Numbers corresponding to terms <= 827 are certified primes. %C A101724 a(34) > 10^5. - Robert Price, May 11 2015 %D A101724 Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467. %H A101724 Makoto Kamada, <a href="https://stdkmd.net/nrr/4/43337.htm#prime">Prime numbers of the form 433...337</a>. %H A101724 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>. %F A101724 a(n) = A102989(n) - 1. %e A101724 4337 is prime, hence 2 is a term. %t A101724 Select[Range[0, 300], PrimeQ[(390*10^# + 33)/9] &] (* _Robert Price_, May 11 2015 *) %o A101724 (PARI) a=47;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-33) %o A101724 (PARI) for(n=0,1500,if(isprime((390*10^n+33)/9),print1(n,","))) %Y A101724 Cf. A000533, A002275, A102989. %K A101724 nonn,hard,more %O A101724 1,2 %A A101724 _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004 %E A101724 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008 %E A101724 a(27)-a(31) from Kamada data by _Ray Chandler_, Apr 30 2015 %E A101724 a(32)-a(33) from _Robert Price_, May 11 2015