cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101881 Write two numbers, skip one, write two, skip two, write two, skip three ... and so on.

This page as a plain text file.
%I A101881 #64 Nov 04 2024 01:50:11
%S A101881 1,2,4,5,8,9,13,14,19,20,26,27,34,35,43,44,53,54,64,65,76,77,89,90,
%T A101881 103,104,118,119,134,135,151,152,169,170,188,189,208,209,229,230,251,
%U A101881 252,274,275,298,299,323,324,349,350,376,377,404,405,433,434,463,464,494
%N A101881 Write two numbers, skip one, write two, skip two, write two, skip three ... and so on.
%C A101881 Equals row sums of triangle A177994. - _Gary W. Adamson_, May 16 2010
%C A101881 From _Ralf Stephan_, Mar 09 2014: (Start)
%C A101881 Write the positive integers in a skewed triangle:
%C A101881   1,  2;
%C A101881   0,  3,  4,  5;
%C A101881   0,  0,  6,  7,  8,  9;
%C A101881   0,  0,  0, 10, 11, 12, 13, 14;
%C A101881   ...
%C A101881 Sequence consists of the first number in each column. (End)
%C A101881 In a regular k-polygon draw lines connecting all the vertices. Select a triangle that tiles the polygon into k pieces. This triangle contains two adjacent polygon vertices. The third vertex is for even k the center of the polygon and for odd k one of the vertices of the central k-polygon (which is not included in the tiling). Count all lines connecting vertices in the original k-polygon that passes through the interior of the tiling triangle. That count is a(k-5). (See illustrations below.) - _Lars Blomberg_, Feb 20 2020
%C A101881 a(n) is the smallest number which has n+1 as a part in any of its maximally refined strict partitions. The first such are:(1),(2),(1,3),(1,4),(1,2,5),(1,2,6),(1,2,3,7),(1,2,3,8),(1,2,3,4,9) etc. - _Sigurd Kittilsen_, Oct 18 2024
%H A101881 Vincenzo Librandi, <a href="/A101881/b101881.txt">Table of n, a(n) for n = 0..1000</a>
%H A101881 Lars Blomberg, <a href="/A101881/a101881.png">Illustration for 14-polygon</a>
%H A101881 Lars Blomberg, <a href="/A101881/a101881_1.png">Illustration for 15-polygon</a>
%H A101881 Rene Marczinzik, <a href="https://arxiv.org/abs/1701.00972">Finitistic Auslander algebras</a>, arXiv:1701.00972 [math.RT], 2017. [Page 9, Conjecture]
%H A101881 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F A101881 G.f.: (-1+x^3-x)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
%F A101881 a(n) = (1/16)*(2*n^2 + 18*n + 15 + (2*n+1)*(-1)^n). - _Ralf Stephan_, Mar 09 2014
%F A101881 a(2*n) = A034856(n+1); a(2*n+1) = A000096(n+1). - _Reinhard Zumkeller_, Feb 20 2015
%F A101881 a(n) = n + 1 + A008805(n-2). - _Wesley Ivan Hurt_, Nov 17 2017
%F A101881 E.g.f.: (cosh(x) - sinh(x))*(1 - 2*x + (15 + 20*x + 2*x^2)*(cosh(2*x) + sinh(2*x)))/16. - _Stefano Spezia_, Feb 20 2020
%t A101881 CoefficientList[Series[(-1 + x^3 - x)/((x + 1)^2 (x - 1)^3), {x, 0, 60}], x] (* _Vincenzo Librandi_, Mar 11 2014 *)
%t A101881 LinearRecurrence[{1,2,-2,-1,1},{1,2,4,5,8},60] (* _Harvey P. Dale_, Dec 07 2016 *)
%t A101881 With[{nn=60},Take[#,2]&/@TakeList[Range[(nn^2+nn-6)/2],Range[3,nn]]]// Flatten (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Mar 30 2019 *)
%o A101881 (Magma) [(1/16)*(2*n^2+18*n+15+(2*n+1)*(-1)^n): n in [0..60]]; // _Vincenzo Librandi_, Mar 11 2014
%o A101881 (Haskell)
%o A101881 import Data.List (intersperse)
%o A101881 a101881 n = a101881_list !! n
%o A101881 a101881_list = scanl1 (+) $ intersperse 1 [1..]
%o A101881 -- _Reinhard Zumkeller_, Feb 20 2015
%o A101881 (PARI) Vec((-1+x^3-x)/((x+1)^2*(x-1)^3) + O(x^60)) \\ _Iain Fox_, Nov 17 2017
%Y A101881 Cf. A000217, A101882, A101883, A177994.
%Y A101881 Cf. A000096, A034856.
%K A101881 easy,nonn
%O A101881 0,2
%A A101881 Candace Mills (scorpiocand(AT)yahoo.com), Dec 19 2004