cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101882 Write three numbers, skip one, write three, skip two, write three, skip three... and so on.

This page as a plain text file.
%I A101882 #26 Jun 17 2025 22:46:46
%S A101882 1,2,3,5,6,7,10,11,12,16,17,18,23,24,25,31,32,33,40,41,42,50,51,52,61,
%T A101882 62,63,73,74,75,86,87,88,100,101,102,115,116,117,131,132,133,148,149,
%U A101882 150,166,167,168,185,186,187,205,206,207,226,227,228,248,249,250,271
%N A101882 Write three numbers, skip one, write three, skip two, write three, skip three... and so on.
%C A101882 Union of A052905, A052905+1, and A052905+2. - _Ivan Neretin_, Aug 03 2016
%C A101882 First terms of the 3 repeated terms belong to A052905. - _Michael De Vlieger_, Aug 03 2016
%H A101882 Ivan Neretin, <a href="/A101882/b101882.txt">Table of n, a(n) for n = 1..10000</a>
%H A101882 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).
%F A101882 G.f.: x*(1+x+x^2-x^4-x^5)/ ((1+x+x^2)^2 * (1-x)^3). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by _R. J. Mathar_, Sep 16 2009]
%F A101882 a(n) = n + k * (k+1) / 2 where k = floor((n-1) / 3). - _Ziad Ahmed_, Jun 17 2025
%t A101882 Flatten@Table[(n^2 + 5 n - 4)/2 + {0, 1, 2}, {n, 20}] (* _Ivan Neretin_, Aug 03 2016 *)
%t A101882 Table[Range[#, # + 2] &[(n^2 + 7 n + 2)/2], {n, 0, 20}] // Flatten (* or *)
%t A101882 Rest@ CoefficientList[Series[x (1 + x + x^2 - x^4 - x^5)/((1 + x + x^2)^2 (1 - x)^3), {x, 0, 61}], x] (* _Michael De Vlieger_, Aug 03 2016 *)
%t A101882 LinearRecurrence[{1,0,2,-2,0,-1,1},{1,2,3,5,6,7,10},70] (* _Harvey P. Dale_, Dec 26 2019 *)
%o A101882 (PARI) a(n)=my(k=n%3); if(k==2, n^2+17*n-2, k==1, n^2+19*n-2, n^2+15*n)/18 \\ _Charles R Greathouse IV_, Aug 03 2016
%Y A101882 Cf. A000217, A052905, A101881, A101883.
%K A101882 easy,nonn
%O A101882 1,2
%A A101882 Candace Mills (scorpiocand(AT)yahoo.com), Dec 19 2004