cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101892 a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*J(k), where J = A001045.

Original entry on oeis.org

0, 0, 1, 3, 7, 15, 33, 77, 187, 459, 1121, 2717, 6555, 15795, 38081, 91893, 221867, 535755, 1293633, 3123277, 7540187, 18203139, 43945441, 106092997, 256131435, 618357915, 1492851361, 3604064733, 8700980827, 21006018195, 50713000833
Offset: 0

Views

Author

Paul Barry, Dec 22 2004

Keywords

Comments

Transform of A001045 under the mapping g(x)-> (1/(1-x))*g(x^2/((1-x)^2)). Binomial transform of aerated Jacobsthal numbers 0,0,1,0,1,0,3,0,5,0,11,...
J(n) may be recovered as Sum_{k=0..2*n} Sum_{j=0..k} C(0,2*n-k)*C(k,j)*(-1)^(k-j)*a(j). - Paul Barry, Jun 10 2005

Crossrefs

Formula

G.f.: x^2*(1 - x)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + 2*a(n-4).
a(n) = Sum_{k=0..n} binomial(n, k)*A001045(k/2)*(1+(-1)^k)/2.
a(n) = (1/6)*( 2*A001333(n) - A009545(n+2) ). - Ralf Stephan, May 17 2007