A101894 Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n and having k peaks at odd height.
1, 1, 1, 3, 2, 1, 10, 8, 3, 1, 36, 34, 15, 4, 1, 137, 150, 77, 24, 5, 1, 543, 678, 399, 144, 35, 6, 1, 2219, 3116, 2073, 854, 240, 48, 7, 1, 9285, 14494, 10769, 4996, 1600, 370, 63, 8, 1, 39587, 68032, 55875, 28852, 10387, 2736, 539, 80, 9, 1, 171369, 321590, 289431
Offset: 0
Examples
T(3,2)=3 because we have H(UD)(UD), (UD)(UD)H and (UD)H(UD), the peaks at aodd height being shown between parentheses. Triangle begins: 1; 1,1; 3,2,1; 10,8,3,1; 36,34,15,4,1;
Programs
-
Maple
G := 1/2/(-z+t*z^2)*(-1+t*z+z-t*z^2+sqrt(1-2*t*z-6*z+8*t*z^2+t^2*z^2-2*t^2*z^3+5*z^2-6*t*z^3+t^2*z^4)): Gser:=simplify(series(G,z=0,13)):P[0]:=1: for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od;
Formula
G.f.=G=G(t, z) satisfies z(1-tz)G^2-(1-z)(1-tz)G+1-z=0.
Comments