This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101897 #19 Jul 19 2024 19:04:35 %S A101897 1,-1,1,1,-2,1,-2,4,-3,1,5,-11,9,-4,1,-17,38,-33,16,-5,1,71,-162,145, %T A101897 -74,25,-6,1,-357,824,-753,396,-140,36,-7,1,2101,-4892,4535,-2434,885, %U A101897 -237,49,-8,1,-14203,33286,-31185,16982,-6295,1730,-371,64,-9,1,108609,-255824,241621,-133012,50001,-13992,3073,-548,81 %N A101897 Triangle T, read by rows, such that column k equals column 0 of T^(k+1), where column 0 of T allows the n-th row sums to be zero for n>0 and where T^k is the k-th power of T as a lower triangular matrix. %C A101897 Column 0 forms A101900. Absolute row sums form A101901. %H A101897 J.-L. Baril, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p178">Classical sequences revisited with permutations avoiding dotted pattern</a>, Electronic Journal of Combinatorics, 18 (2011), #P178. %F A101897 T(n, k) = Sum_{j=0..n-k} T(n-k, j)*T(j+k-1, k-1) for n >= k > 0 with T(0, 0) = 1 and T(n, 0) = -Sum_{j=1, n} T(n, j) for n > 0. %e A101897 Rows begin: %e A101897 1; %e A101897 -1, 1; %e A101897 1, -2, 1; %e A101897 -2, 4, -3, 1; %e A101897 5, -11, 9, -4, 1; %e A101897 -17, 38, -33, 16, -5, 1; %e A101897 71, -162, 145, -74, 25, -6, 1; %e A101897 -357, 824, -753, 396, -140, 36, -7, 1, %e A101897 2101, -4892, 4535, -2434, 885, -237, 49, -8, 1; %e A101897 -14203, 33286, -31185, 16982, -6295, 1730, -371, 64, -9, 1; %e A101897 ... %t A101897 t[n_, k_] := t[n, k] = If[k>n || n<0 || k<0, 0, If[k==n, 1, If[k==0, -Sum[t[n, j], {j, 1, n}], Sum[t[n-k, j]*t[j+k-1, k-1], {j, 0, n-k}]]]]; Table[t[n ,k], {n,0,10}, {k, 0, n}] //Flatten (* _Amiram Eldar_, Nov 26 2018 *) %o A101897 (PARI) {T(n,k)=if(k>n||n<0||k<0,0,if(k==n,1, if(k==0,-sum(j=1,n,T(n,j)), sum(j=0,n-k,T(n-k,j)*T(j+k-1,k-1));));)} %Y A101897 Cf. A091351, A101900, A101901, A101898, A101899. %K A101897 sign,tabl %O A101897 0,5 %A A101897 _Paul D. Hanna_, Dec 20 2004