A101908 Triangle read by rows: Characteristic polynomials of lower triangular Bell number matrix.
1, -1, 1, -3, 2, 1, -8, 17, -10, 1, -23, 137, -265, 150, 1, -75, 1333, -7389, 13930, -7800, 1, -278, 16558, -277988, 1513897, -2835590, 1583400, 1, -1155, 260364, -14799354, 245309373, -1330523259, 2488395830, -1388641800, 1, -5295, 5042064, -1092706314, 61514634933, -1016911327479
Offset: 1
Examples
The characteristic polynomial of the 3X3 matrix 1 0 0 1 2 0 2 3 5 = x^3 - 8x^2 + 17x - 10, with roots (1, 2, 5).
Programs
-
Mathematica
m[0, 0] = 1; m[n_, 0] := m[n, 0] = m[n-1, n-1]; m[n_, k_] := m[n, k] = m[n, k-1] + m[n-1, k-1]; m[n_, k_] /; k > n = 0; bm[n_] := Table[m[n0, k], {n0, 0, n}, {k, 0, n}]; row[n_] := (coes = Reverse[ CoefficientList[ CharacteristicPolynomial[ bm[n], x], x]]; Sign[coes[[1]]]*coes); Flatten[ Table[ row[n], {n, 0, 7}]] (* Jean-François Alcover, Sep 13 2012 *)
-
PARI
BM(n) = M=matrix(n,n);M[1,1]=1;if(n>1,M[2,1]=1;M[2,2]=2);\ for(l=3,n,M[l,1]=M[l-1,l-1];for(k=2,l,M[l,k]=M[l,k-1]+M[l-1,k-1]));M for(i=1,10,print(charpoly(BM(i)))) for(i=1,10,print(round(real(polroots(charpoly(BM(i)))))))
Comments