cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101908 Triangle read by rows: Characteristic polynomials of lower triangular Bell number matrix.

Original entry on oeis.org

1, -1, 1, -3, 2, 1, -8, 17, -10, 1, -23, 137, -265, 150, 1, -75, 1333, -7389, 13930, -7800, 1, -278, 16558, -277988, 1513897, -2835590, 1583400, 1, -1155, 260364, -14799354, 245309373, -1330523259, 2488395830, -1388641800, 1, -5295, 5042064, -1092706314, 61514634933, -1016911327479
Offset: 1

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Jan 28 2005

Keywords

Comments

Roots of the polynomials are the Bell numbers (A000110) except the leading term.
Second column of the triangle = A024716(n) (partial sums of Bell numbers).
Generation of the triangle: n-th row polynomials are the characteristic polynomial of the lower triangular matrix of the first n rows of the Bell triangle.
So from triangle
1
1 2
2 3 5
5 7 10 15
...
we get characteristic polynomials
x - 1
x^2 - 3*x + 2
x^3 - 8*x^2 + 17*x - 10
x^4 - 23*x^3 + 137*x^2 - 265*x + 150
...
All polynomials (except the first) evaluated at 2 give zero.

Examples

			The characteristic polynomial of the 3X3 matrix
1 0 0
1 2 0
2 3 5
= x^3 - 8x^2 + 17x - 10, with roots (1, 2, 5).
		

Crossrefs

Programs

  • Mathematica
    m[0, 0] = 1; m[n_, 0] := m[n, 0] = m[n-1, n-1]; m[n_, k_] := m[n, k] = m[n, k-1] + m[n-1, k-1]; m[n_, k_] /; k > n = 0; bm[n_] := Table[m[n0, k], {n0, 0, n}, {k, 0, n}]; row[n_] := (coes = Reverse[ CoefficientList[ CharacteristicPolynomial[ bm[n], x], x]]; Sign[coes[[1]]]*coes); Flatten[ Table[ row[n], {n, 0, 7}]] (* Jean-François Alcover, Sep 13 2012 *)
  • PARI
    BM(n) = M=matrix(n,n);M[1,1]=1;if(n>1,M[2,1]=1;M[2,2]=2);\ for(l=3,n,M[l,1]=M[l-1,l-1];for(k=2,l,M[l,k]=M[l,k-1]+M[l-1,k-1]));M for(i=1,10,print(charpoly(BM(i)))) for(i=1,10,print(round(real(polroots(charpoly(BM(i)))))))