This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101922 #28 Sep 11 2022 09:29:01 %S A101922 -1,-1,11,491,11159,-460681,-103577629,-8160790429,624333860399, %T A101922 386787409545839,68810049201689531,-6999828208693648549, %U A101922 -9872674440874152431161,-3255253386897615662908441,346248578699462435167833491,1072454627614122049417452882131 %N A101922 Numerators of expansion of e.g.f. 2^(-1/2) * arcsinh(cos(x)), even powers only. %C A101922 With sign pattern +--+--: numerators of expansion of 2^(-1/2) * arcsinh(cosh(x)). %C A101922 Odd coefficients are zero, denominators are 2^n. %F A101922 arcsinh(cos(x)) = log(sqrt(2)+1) + 1/sqrt(2) * (-(1/2)*x^2/2! - (1/4)*x^4/4! + (11/8)*x^6/6! + (491/16)*x^8/8! + ...). %F A101922 arccosh(cos(x)) = Pi/2 - log(sqrt(2)+1) + 1/sqrt(2) * ((1/2)*x^2/2! + (1/4)*x^4/4! - (11/8)*x^6/6! - (491/16)*x^8/8! - ...). %F A101922 a(n) = - A263246(n). - _Michel Marcus_, Sep 11 2022 %t A101922 Table[Numerator[(2n)!SeriesCoefficient[ArcSinh[Cos[x]]/Sqrt[2],{x,0,2n}]],{n,14}] (* _Stefano Spezia_, Aug 29 2022 *) %o A101922 (PARI) lista(nn) = my(x='x + O('x^(nn+1)), p=serlaplace(asinh(cos(x))/sqrt(2))); vector(nn\2, k, round(polcoef(p, 2*k)*2^k)); \\ _Michel Marcus_, Sep 11 2022 %Y A101922 Cf. A101924, A012495, A263246. %K A101922 sign %O A101922 1,3 %A A101922 _Ralf Stephan_, Dec 27 2004 %E A101922 More terms from _Michel Marcus_, Sep 11 2022