cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101950 Product of A049310 and A007318 as lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, -1, 1, 3, 1, -1, -2, 3, 4, 1, 0, -4, -2, 6, 5, 1, 1, -2, -9, 0, 10, 6, 1, 1, 3, -9, -15, 5, 15, 7, 1, 0, 6, 3, -24, -20, 14, 21, 8, 1, -1, 3, 18, -6, -49, -21, 28, 28, 9, 1, -1, -4, 18, 36, -35, -84, -14, 48, 36, 10, 1, 0, -8, -4, 60, 50, -98, -126, 6, 75, 45, 11, 1, 1, -4, -30, 20, 145, 36, -210
Offset: 0

Views

Author

Paul Barry, Dec 22 2004

Keywords

Comments

A Chebyshev and Pascal product.
Row sums are n+1, diagonal sums the constant sequence 1 resp. A023434(n+1). Riordan array (1/(1-x+x^2),x/(1-x+x^2)).
Apart from signs, identical with A104562.
Subtriangle of the triangle given by [0,1,-1,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 27 2010
The Fi1 and Fi2 sums lead to A004525 and the Gi1 sums lead to A077889, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 06 2011
Also the convolution triangle of the inverse of 6th cyclotomic polynomial A010892. - Peter Luschny, Oct 08 2022

Examples

			Triangle begins:
   1,
   1, 1,
   0, 2, 1,
  -1, 1, 3, 1,
  -1,-2, 3, 4, 1,
  ...
Triangle [0,1,-1,1,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins : 1 ; 0,1 ; 0,1,1 ; 0,0,2,1 ; 0,-1,1,3,1 ; 0,-1,-2,3,4,1 ; ... - _Philippe Deléham_, Jan 27 2010
		

Crossrefs

Programs

  • Maple
    A101950 := proc(n,k) local j,k1: add((-1)^((n-j)/2)*binomial((n+j)/2,j)*(1+(-1)^(n+j))* binomial(j,k)/2, j=0..n) end: seq(seq(A101950(n,k),k=0..n), n=0..11); # Johannes W. Meijer, Aug 06 2011
    # Uses function PMatrix from A357368. Adds a row on top and a column to the left.
    PMatrix(10, n -> [0, 1, 1, 0, -1,-1][irem(n, 6) + 1]); # Peter Luschny, Oct 08 2022
  • Mathematica
    T[0, 0] = 1; T[n_, k_] /; k>n || k<0 = 0; T[n_, k_] := T[n, k] = T[n-1, k-1]+T[n-1, k]-T[n-2, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)

Formula

T(n, k) = Sum_{j=0..n} (-1)^((n-j)/2)*C((n+j)/2,j)*(1+(-1)^(n+j))*C(j,k)/2.
T(0,0) = 1, T(n,k) = 0,if k>n or if k<0, T(n,k) = T(n-1,k-1) + T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
p(n,x) = (x+1)*p(n-1,x)-p(n-2,x) with p(0,x) = 1 and p(1,x) = x+1 [Dias].
G.f.: 1/(1-x-x^2-y*x). - Philippe Deléham, Feb 10 2012
T(n,0) = A010892(n), T(n+1,1) = A099254(n), T(n+2,2) = A128504(n). - Philippe Deléham, Mar 07 2014
T(n,k) = C(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], 4) for n>=1. - Peter Luschny, Apr 25 2016

Extensions

Typo in formula corrected and information added by Johannes W. Meijer, Aug 06 2011