This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101974 #6 Jun 21 2019 05:25:42 %S A101974 1,2,4,1,9,4,1,23,11,7,1,65,27,28,11,1,197,66,87,62,16,1,626,170,239, %T A101974 250,122,22,1,2056,471,627,829,630,219,29,1,6918,1398,1656,2448,2553, %U A101974 1419,366,37,1,23714,4381,4554,6803,8813,6979,2917,578,46,1,82500,14282 %N A101974 Triangle read by rows: number of Dyck paths of semilength n with k peaks before the first return (1<= k <n). %D A101974 E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202. %F A101974 T(n, 1)=sum(c(i), i=0..n-1), T(n, k)=sum(c(j)*binomial(n-1-j, k-1)*binomial(n-1-j, k)/(n-1-j), j=0..n-2) for k>1, where c(i)=binomial(2i, i)/(i+1) (i=0, 1, ...) are the Catalan numbers (A000108); %F A101974 G.f.=1+tzC(z)[1+r(t, z)], where C(z)=1+zC(z)^2 is the Catalan function and r(t, z)=z[1+r(t, z)][1+tr(t, z)] is the Narayana function. %e A101974 T(4,2)=4 because we have U(UD)(UD)D|UD, U(UD)U(UD)DD|, UU(UD)D(UD)D| and %e A101974 UU(UD)(UD)DD|, where U=(1,1), D=(1,-1) (the peaks before the first return | are shown between parentheses). %e A101974 1 %e A101974 2 %e A101974 4 1 %e A101974 9 4 1 %e A101974 23 11 7 1 %e A101974 65 27 28 11 1 %e A101974 197 66 87 62 16 1 %e A101974 626 170 239 250 122 22 1 %e A101974 2056 471 627 829 630 219 29 1 %e A101974 6918 1398 1656 2448 2553 1419 366 37 1 %e A101974 23714 4381 4554 6803 8813 6979 2917 578 46 1 %e A101974 82500 14282 13231 18571 27362 28364 17206 5567 872 56 1 %p A101974 c:=n->binomial(2*n,n)/(n+1): %p A101974 T:=proc(n,k) if k=1 then sum(c(i),i=0..n-1) else sum(c(j)*binomial(n-1-j,k-1)*binomial(n-1-j,k)/(n-1-j),j=0..n-2) fi end proc: %p A101974 T(1,1); %p A101974 for n from 1 to 12 do seq(T(n,k),k=1..n-1) od; # yields the sequence in triangular form %Y A101974 Cf. A000108 (row sums), A014137 (column k=1), A014151 (column k=2), A101975. %K A101974 nonn,tabf %O A101974 1,2 %A A101974 _Emeric Deutsch_, Dec 22 2004