cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101975 Triangle read by rows: number of Dyck paths of semilength n with k peaks after the first return (0 <= k < n).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 4, 4, 1, 14, 9, 11, 7, 1, 42, 23, 27, 28, 11, 1, 132, 65, 66, 87, 62, 16, 1, 429, 197, 170, 239, 250, 122, 22, 1, 1430, 626, 471, 627, 829, 630, 219, 29, 1, 4862, 2056, 1398, 1656, 2448, 2553, 1419, 366, 37, 1, 16796, 6918, 4381, 4554, 6803, 8813, 6979, 2917, 578, 46, 1
Offset: 1

Views

Author

Emeric Deutsch, Dec 22 2004

Keywords

Examples

			T(4,2)=4 because we have UD|(UD)U(UD)D, UD|U(UD)D(UD), UD|U(UD)(UD)D and
UUDD|(UD)(UD), where U=(1,1), D=(1,-1) (the two peaks after the first return | are shown between parentheses).
Triangle begins:
   1;
   1,  1;
   2,  2,  1;
   5,  4,  4,  1;
  14,  9, 11,  7,  1;
  42, 23, 27, 28, 11,  1;
  ...
		

References

  • Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.

Crossrefs

Programs

  • Maple
    c:=n->binomial(2*n,n)/(n+1):T:=proc(n,k) if k=0 then c(n-1) elif k=1 then sum(c(i),i=0..n-2) else sum(c(j)*binomial(n-1-j,k-1)*binomial(n-1-j,k)/(n-1-j),j=0..n-2) fi end: for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields the sequence in triangular form

Formula

T(n,0) = c(n-1), T(n,1) = Sum_{i=0..n-2} c(i), T(n,k) = Sum_{j=0..n-2} c(j)*binomial(n-1-j, k-1)*binomial(n-1-j, k)/(n-1-j) for k >= 2, where c(i) = binomial(2i, i)/(i+1) (i=0, 1, ...) are the Catalan numbers (A000108).