A101977 Number of products of distinct factorials not exceeding n!.
1, 2, 3, 5, 7, 11, 15, 22, 31, 43, 58, 74, 97, 131, 171, 222, 277, 349, 447, 564, 698, 868, 1074, 1321, 1601, 1967, 2398, 2911, 3513, 4235, 5083, 6071, 7242, 8637, 10229, 12102, 14293, 16848, 19802, 23271, 27276, 31846, 37132, 43196, 50191, 58238, 67425, 77946
Offset: 1
Keywords
Examples
a(4) = 5 because 5 products of distinct factorials do not exceed 4!, namely, 1, 2, 6, 12 and 24.
Programs
-
Mathematica
d[k_] := (m=1; With[{p=With[{s=Subsets[Table[n!, {n, k}]]}, Sort[Table[Apply[Times, s[[n]]], {n, Length[s]}]]]}, While[p[[m]]<=k!, m++ ]; Length[Union[Take[p, m-1]]]]);Table[d[k], {k, 19}]
Extensions
a(20)-a(48) from Donovan Johnson, May 30 2012
Comments