cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101979 Antidiagonal sums of A101309, which is the matrix logarithm of A047999 (Pascal's triangle mod 2).

This page as a plain text file.
%I A101979 #3 Mar 30 2012 18:36:44
%S A101979 0,1,1,0,2,1,1,0,2,1,3,0,2,1,1,0,2,1,3,0,4,1,3,0,2,1,3,0,2,1,1,0,2,1,
%T A101979 3,0,4,1,3,0,4,1,5,0,4,1,3,0,2,1,3,0,4,1,3,0,2,1,3,0,2,1,1,0,2,1,3,0,
%U A101979 4,1,3,0,4,1,5,0,4,1,3,0,4,1,5,0,6,1,5,0,4,1,5,0,4,1,3,0,2,1,3,0,4,1,3,0,4
%N A101979 Antidiagonal sums of A101309, which is the matrix logarithm of A047999 (Pascal's triangle mod 2).
%C A101979 Partial sums at positions 2^m-1 = m*2^(m-2) for m>=2.
%e A101979 Partial sums at 2^m-1 are:
%e A101979 at 2^2-1 (m=2): 0+1+1+0 = 2 = 2*2^(2-2),
%e A101979 at 2^3-1 (m=3): 0+1+1+0+2+1+1+0 = 6 = 3*2^(3-2),
%e A101979 at 2^4-1 (m=4): 0+1+1+0+2+1+1+0+2+1+3+0+2+1+1+0 = 16 = 4*2^(4-2).
%o A101979 (PARI) {a(n)=sum(k=0,(n-1)\2,if(bitxor(n-k,k)==2^valuation(bitxor(n-k,k),2),1,0))}
%Y A101979 Cf. A047999, A101309.
%K A101979 nonn
%O A101979 0,5
%A A101979 _Paul D. Hanna_, Dec 23 2004