This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101996 #17 May 13 2024 02:14:17 %S A101996 359,107279,126839,253679,254279,508559,592199,681839,1214639,1621079, %T A101996 2138399,2245319,3197399,3243239,3641999,3732479,3825359,3841919, %U A101996 4090679,4276799,4315799,4490639,4556159,4714439,5335559,5731679 %N A101996 Primes of the form 8*k-1 such that 4*k-1, 16*k-1, 32*k-1 and 64*k-1 are also primes. %H A101996 Amiram Eldar, <a href="/A101996/b101996.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..750 from Harvey P. Dale) %F A101996 a(n) = 8*A101994(n) - 1 = 2*A101995(n) + 1. - _Amiram Eldar_, May 13 2024 %e A101996 4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 359 is a term. %t A101996 8#-1&/@Select[Range[720000],AllTrue[{4,8,16,32,64}#-1,PrimeQ]&] (* _Harvey P. Dale_, Jan 17 2023 *) %t A101996 Select[Table[2^Range[2,6] n-1,{n,750000}],AllTrue[#,PrimeQ]&][[;;,2]] (* _Harvey P. Dale_, Jun 03 2023 *) %o A101996 (PARI) is(k) = if(k % 8 == 7, my(m = k\8 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ _Amiram Eldar_, May 13 2024 %Y A101996 Cf. A101789, A101994, A101995, A101997, A101998, A101999. %Y A101996 Subsequence of A007522, A101792 and A101796. %K A101996 easy,nonn %O A101996 1,1 %A A101996 Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004 %E A101996 Corrected by _T. D. Noe_, Nov 15 2006