This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102024 #22 Jan 17 2019 13:44:07 %S A102024 0,1,2,4,8,10,13,31,53,54,59,152,199,460,568,839,846,1295,1355,2006, %T A102024 2626,2846,3109,6875,9160,17764,33554,59141,65772,280709 %N A102024 Indices of primes in sequence defined by A(0) = 17, A(n) = 10*A(n-1) - 3 for n > 0. %C A102024 Numbers n such that (150*10^n + 3)/9 is prime. %C A102024 Numbers n such that digit 1 followed by n >= 0 occurrences of digit 6 followed by digit 7 is prime. %C A102024 Numbers corresponding to terms <= 846 are certified primes. %C A102024 a(31) > 3*10^5. - _Robert Price_, Nov 15 2014 %D A102024 Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467. %H A102024 Makoto Kamada, <a href="https://stdkmd.net/nrr/1/16667.htm#prime">Prime numbers of the form 166...667</a>. %H A102024 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a> %F A102024 a(n) = A102940(n+1) - 1. - _Robert Price_, Nov 15 2014 %e A102024 167 is prime, hence 1 is a term. %o A102024 (PARI) a=17;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-3) %o A102024 (PARI) for(n=0,1500,if(isprime((150*10^n+3)/9),print1(n,","))) %Y A102024 Cf. A000533, A002275, A102940. %K A102024 nonn,hard,more %O A102024 1,3 %A A102024 _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004 %E A102024 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008 %E A102024 a(26)-a(30) derived from A102940 by _Robert Price_, Nov 15 2014