This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102037 #20 Feb 16 2025 08:32:55 %S A102037 0,0,0,0,1,0,0,0,0,0,0,1,2,3,0,0,0,2,2,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0, %T A102037 0,0,0,1,2,3,4,5,6,7,0,0,0,2,2,4,4,6,6,0,0,0,1,0,1,4,5,4,5,0,1,0,0,0, %U A102037 0,0,4,4,4,4,0,0,0,0,0,1,2,3,0,1,2,3,0,1,2,3,0 %N A102037 Triangle of BitAnd(BitNot(n), k). %C A102037 As a logical operation on two variables this is also called the 'converse nonimplication'. - _Peter Luschny_, Sep 25 2021 %H A102037 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiSieve.html">Sierpinski Sieve</a> %H A102037 Wikipedia, <a href="https://en.wikipedia.org/wiki/Converse_nonimplication">Converse nonimplication</a>. %e A102037 Table starts: %e A102037 [0] 0; %e A102037 [1] 0, 0; %e A102037 [2] 0, 1, 0; %e A102037 [3] 0, 0, 0, 0; %e A102037 [4] 0, 1, 2, 3, 0; %e A102037 [5] 0, 0, 2, 2, 0, 0; %e A102037 [6] 0, 1, 0, 1, 0, 1, 0; %e A102037 [7] 0, 0, 0, 0, 0, 0, 0, 0; %e A102037 [8] 0, 1, 2, 3, 4, 5, 6, 7, 0; %e A102037 [9] 0, 0, 2, 2, 4, 4, 6, 6, 0, 0. %p A102037 with(Bits): cnimp := (n, k) -> And(Not(n), k): %p A102037 seq(print(seq(cnimp(n,k), k=0..n)), n = 0..12); # _Peter Luschny_, Sep 25 2021 %o A102037 (Julia) %o A102037 using IntegerSequences %o A102037 A102037Row(n) = [Bits("CNIMP", n, k) for k in 0:n] %o A102037 for n in 0:20 println(A102037Row(n)) end # _Peter Luschny_, Sep 25 2021 %Y A102037 Cf. A350094 (row sums), A268040 (array). %Y A102037 Other triangles: A080099 (AND), A080098 (OR), A051933 (XOR), A265705 (IMPL). %K A102037 nonn,easy,tabl %O A102037 0,13 %A A102037 _Eric W. Weisstein_, Dec 25 2004