cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102048 Exponent of A046021(n) (least inverse of Kempner function A002034) when written as a power of A006530(n) (largest prime dividing n), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 5, 3, 2, 1, 5, 1, 2, 3, 12, 1, 7, 1, 4, 3, 2, 1, 10, 5, 2, 11, 4, 1, 7, 1, 27, 3, 2, 5, 16, 1, 2, 3, 9, 1, 6, 1, 4, 10, 2, 1, 22, 7, 11, 3, 4, 1, 24, 5, 9, 3, 2, 1, 14, 1, 2, 10, 58, 5, 6, 1, 4, 3, 11, 1, 33, 1, 2, 17, 4, 7, 6, 1, 19, 37, 2, 1, 13, 5, 2, 3, 8, 1, 21, 7, 4, 3, 2, 5
Offset: 1

Views

Author

Jonathan Sondow, Dec 26 2004

Keywords

Examples

			a(6) = 2 because A046021(6) = 9 = 3^2 = A006530(6)^2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Factorial Factors, Section 4.4 in Concrete Mathematics, 2nd ed. Reading, MA: Addison-Wesley, pp. 111-115, 1994.

Crossrefs

Programs

  • Mathematica
    With[{p=First[Last[FactorInteger[n, FactorComplete->True]]]}, 1+Sum[Floor[(n-1)/p^k], {k, Floor[Log[n-1]/Log[p]]}]]
  • PARI
    A102048(n,p=A006530(n))=1+if(n>1,sum(k=1,logint(n-=1,p),n\p^k)) \\ M. F. Hasler, Nov 27 2018
    
  • Python
    from sympy import primefactors, integer_log
    def A102048(n):
        if n == 1: return 1
        p = max(primefactors(n))
        return 1+sum((n-1)//p**k for k in range(1,integer_log(n-1,p)[0]+1)) # Chai Wah Wu, Oct 17 2024

Formula

a(n) = log(A046021(n))/log(A006530(n)) for n > 1.
a(n) = 1 + Sum_{k=1..floor(log(n-1)/log(P))} floor((n-1)/P^k) for n > 1, where P = A006530(n) is the greatest prime factor of n.