This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102050 #32 Feb 26 2023 20:14:06 %S A102050 1,1,73,17,353,19841,1265011073,257,10753,1514497,1856104284667693057, %T A102050 106907803649,458924033,3635898263938497962802538435084289 %N A102050 a(n) = 1 if 10^(2^n)+1 is prime, otherwise smallest prime factor of 10^(2^n)+1. %C A102050 The smallest known prime factors of 10^(2^15)+1 to 10^(2^18)+1 are 65537, 8257537, 175636481, 639631361. - _Jeppe Stig Nielsen_, Nov 04 2010 %C A102050 Above values for a(15)-a(18) are confirmed. a(19) = 70254593, a(20) = 167772161. - _Chai Wah Wu_, Oct 16 2019 %C A102050 a(14) <= 1702047085242613845984907230501142529. - _Max Alekseyev_, Feb 26 2023 %H A102050 factordb.com, <a href="http://factordb.com/index.php?query=10%5E%282%5En%29%2B1">Status of 10^(2^n)+1</a>. %H A102050 Wilfrid Keller, <a href="http://www.prothsearch.com/GFN10.html">Prime factors of generalized Fermat numbers Fm(10) and complete factoring status</a> %F A102050 If 10^(2^n)+1 is composite, a(n) = A185121(n). %e A102050 10^(2^4)+1 = 10000000000000001 = 353*449*641*1409*69857, hence a(4) = 353. %t A102050 spf[n_]:=Module[{c=10^2^n+1},If[PrimeQ[c],1,FactorInteger[c][[1,1]]]]; Array[spf,15,0] (* _Harvey P. Dale_, Apr 09 2019 *) %o A102050 (PARI) for(k=0,8,fac=factor(10^(2^k)+1);print1(if(matsize(fac)[1]==1,1,fac[1,1]),",")) %Y A102050 Cf. A000533, A002275, A062397. %K A102050 nonn,hard,more %O A102050 0,3 %A A102050 _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004 %E A102050 a(13) from the Keller link, added by _Jeppe Stig Nielsen_, Nov 04 2010