This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102094 #33 Sep 08 2022 08:45:16 %S A102094 9,75,245,567,1089,1859,2925,4335,6137,8379,11109,14375,18225,22707, %T A102094 27869,33759,40425,47915,56277,65559,75809,87075,99405,112847,127449, %U A102094 143259,160325,178695,198417,219539,242109,266175,291785,318987,347829,378359,410625 %N A102094 a(n) = (2*n-1)*(2*n+1)^2. %C A102094 Numbers which are both the sum of 2n+1 consecutive odd integers and, after skipping one odd integer, the sum of the 2n-1 immediately higher consecutive odd integers. See A082108(n-1) for the smallest of the 2n+1 odd integers, and A054569(n+1) for the skipped number. Odd integer counterpart to A059270. - _Charlie Marion_, Apr 30 2020 %D A102094 G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, p. 123. %D A102094 J. Ewell, An Eulerian Method for Representing Pi^2 by Series, The Rocky Mountain Journal of Mathematics 1992 v.22, pp. 165-168. %H A102094 G. C. Greubel, <a href="/A102094/b102094.txt">Table of n, a(n) for n = 1..1000</a> %H A102094 J. Ewell, <a href="https://doi.org/10.1216/rmjm/1181072801">An Eulerian Method for Representing Pi^2 by Series</a>, The Rocky Mountain Journal of Mathematics 1992 v.22, pp. 165-168. %H A102094 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A102094 Sum_{n>=1} 1/a(n) = (12 - Pi^2)/16. %F A102094 Sum_{n>=1} n/a(n) = (Pi^2 - 4)/32. - Sign flipped by _Bernard Schott_, May 06 2020 %F A102094 From _Harvey P. Dale_, Jul 24 2012: (Start) %F A102094 a(1)=9, a(2)=75, a(3)=245, a(4)=567, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). %F A102094 G.f.: (9 + 39*x - x^2 + x^3)/(1-x)^4. (End) %F A102094 E.g.f.: 1 + (-1 + 10*x + 28*x^2 + 8*x^3)*exp(x). - _G. C. Greubel_, Oct 27 2019 %p A102094 seq((2*n-1)*(2*n+1)^2, n=1..40); # _G. C. Greubel_, Oct 27 2019 %t A102094 Table[(2n-1)(2n+1)^2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{9,75,245,567},40] (* _Harvey P. Dale_, Jul 24 2012 *) %o A102094 (PARI) vector(40, n, (2*n-1)*(2*n+1)^2) \\ _G. C. Greubel_, Oct 27 2019 %o A102094 (Magma) [(2*n-1)*(2*n+1)^2: n in [1..40]]; // _G. C. Greubel_, Oct 27 2019 %o A102094 (Sage) [(2*n-1)*(2*n+1)^2 for n in (1..40)] # _G. C. Greubel_, Oct 27 2019 %o A102094 (GAP) List([1..40], n-> (2*n-1)*(2*n+1)^2); # _G. C. Greubel_, Oct 27 2019 %Y A102094 Cf. A002388. %K A102094 easy,nonn %O A102094 1,1 %A A102094 _Gerald McGarvey_, Feb 13 2005 %E A102094 More terms from _Harvey P. Dale_, Jul 24 2012