cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102127 Interval between successive arrivals at the origin of an LQTL CA.

This page as a plain text file.
%I A102127 #35 Apr 05 2024 13:06:49
%S A102127 4,4,4,16,4,4,4,16,4,4,4,4,4,40,4,16,4,4,4,4,12,4,4,8,4,40,4,4,4,4,4,
%T A102127 88,4,40,4,4,4,4,4,16,4,4,4,16,4,4,4,4,4,40,4,88,4,4,4,4,4,40,4,8,4,
%U A102127 12,4,4,4,4,4,16,4,40,4,4,4,4,4,16,4,4,4,16,4
%N A102127 Interval between successive arrivals at the origin of an LQTL CA.
%C A102127 The "LQTL CA" is similar to the Langton's ant but has 4 states. The ant turns right from the cells with states 0, 1 and left from the cells with states 2, 3 and changes the state of the cell according to the rules 0 -> 1 -> 2 -> 3 -> 0. - _Andrey Zabolotskiy_, Jan 06 2023
%H A102127 Andrey Zabolotskiy, <a href="/A102127/b102127.txt">Table of n, a(n) for n = 0..999</a>
%H A102127 Robert H. Barbour, <a href="https://www.complex-systems.com/abstracts/v17_i02_a01/">Two-dimensional Four Color Cellular Automaton: Surface Explorations</a>, Complex Systems, 17 (2007), 103-112.
%H A102127 Palash Sarkar, <a href="https://www.cs.ucf.edu/~dcm/Teaching/COT4810-Spring2011/Literature/CellularAutomata.pdf">A Brief History of Cellular Automata</a>, ACM Computing Surveys, Vol. 32, No. 1, March 2000, 80-107.
%o A102127 (Python)
%o A102127 x = y = direction = 0
%o A102127 cells, a = {}, []
%o A102127 for n in range(1, 1000):
%o A102127     c = cells.get((x, y), 0)
%o A102127     cells[(x, y)] = (c + 1) % 4
%o A102127     direction += [1, 1, -1, -1][c]
%o A102127     (dx, dy) = [(1, 0), (0, 1), (-1, 0), (0, -1)][direction%4]
%o A102127     x += dx;  y += dy
%o A102127     if (x, y) == (0, 0):
%o A102127         a.append(n)
%o A102127 print(a) # A102110
%o A102127 print([x-y for x, y in zip(a, [0]+a)]) # this sequence -  _Andrey Zabolotskiy_, Jan 06 2023
%Y A102127 Cf. A094266, A094867, A099423, A274369, A102369.
%Y A102127 First differences of A102110.
%K A102127 nonn
%O A102127 0,1
%A A102127 _Robert H Barbour_, Feb 14 2005
%E A102127 Terms a(26) and beyond from _Andrey Zabolotskiy_, Jan 06 2023