cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102186 The PDO(n) function (Partitions with Designated summands in which all parts are Odd): the sum of products of multiplicities of parts in all partitions of n into odd parts.

This page as a plain text file.
%I A102186 #48 Jul 19 2025 13:07:12
%S A102186 1,1,2,4,5,8,12,16,22,32,42,56,76,98,128,168,213,272,348,436,548,688,
%T A102186 852,1056,1308,1603,1964,2404,2920,3544,4296,5176,6230,7488,8958,
%U A102186 10704,12772,15182,18024,21368,25254,29808,35136,41308,48504,56880,66552,77776
%N A102186 The PDO(n) function (Partitions with Designated summands in which all parts are Odd): the sum of products of multiplicities of parts in all partitions of n into odd parts.
%H A102186 Seiichi Manyama, <a href="/A102186/b102186.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%H A102186 G. E. Andrews, R. P. Lewis, and J. Lovejoy, <a href="http://dx.doi.org/10.4064/aa105-1-5">Partitions with designated summands</a>, Acta Arith. 105 (2002), no. 1, 51-66.
%H A102186 Shane Chern, Dennis Eichhorn, Shishuo Fu, and James A. Sellers, <a href="https://arxiv.org/abs/2507.10965">Convolutive sequences, I: Through the lens of integer partition functions</a>, arXiv:2507.10965 [math.CO], 2025. See pp. 4, 10, 12.
%H A102186 Nayandeep Deka Baruah and Kanan Kumari Ojah, <a href="https://www.emis.de/journals/INTEGERS/papers/p9/p9.Abstract.html">Partitions with designated summands in which all parts are odd</a>, INTEGERS 15 (2015), #A9.
%H A102186 Shishuo Fu and James Sellers, <a href="https://arxiv.org/abs/2505.21111">A refined view of a curious identity for partitions into odd parts with designated summands</a>, arXiv:2505.21111 [math.CO], 2025.
%F A102186 Euler transform of period 12 sequence [1, 1, 2, 0, 1, 0, 1, 0, 2, 1, 1, 0, ...].
%F A102186 a(n) ~ 5^(1/4) * exp(sqrt(5*n)*Pi/3) / (2^(5/2)*sqrt(3)*n^(3/4)). - _Vaclav Kotesovec_, Nov 28 2015
%F A102186 G.f.: Product_{k>=1} (1 + Sum_{j>=1} j * x^(j*(2*k - 1))). - _Ilya Gutkovskiy_, Nov 06 2019
%e A102186 a(8)=22 because in the six partitions of 8 into odd parts, namely, 71,53,5111,3311,311111,11111111, the multiplicities of the parts are (1,1),(1,1),(1,3),(2,2),(1,5),(8) with products 1,1,3,4,5,8, having sum 22.
%p A102186 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A102186        b(n, i-2) +add(b(n-i*j, i-2)*j, j=1..n/i)))
%p A102186     end:
%p A102186 a:= n-> b(n, iquo(1+n,2)*2-1):
%p A102186 seq(a(n), n=0..50);  # _Alois P. Heinz_, Feb 26 2013
%t A102186 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + Sum[b[n - i*j, i - 2]*j, {j, 1, n/i}]]]; a[n_] := b[n, Quotient[1 + n, 2]*2 - 1]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Jan 24 2014, after _Alois P. Heinz_ *)
%t A102186 nmax=60; CoefficientList[Series[Product[(1-x^(4*k)) * (1+x^(3*k)) / ((1-x^k) * (1+x^(6*k))), {k,1,nmax}], {x,0,nmax}], x] (* _Vaclav Kotesovec_, Nov 28 2015 *)
%t A102186 Table[Total[l = Tally /@ Select[IntegerPartitions@n, VectorQ[#, OddQ] &];
%t A102186   Table[x = l[[i]]; Product[x[[j, 2]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 47}] (* _Robert Price_, Jun 08 2020 *)
%o A102186 (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^4+A)*eta(x^6+A)^2/ eta(x+A)/eta(x^3+A)/eta(x^12+A), n))} /* _Michael Somos_, Jul 30 2006 */
%Y A102186 Cf. A077285 (partitions with designated summands).
%K A102186 easy,nonn
%O A102186 0,3
%A A102186 _Vladeta Jovovic_, Feb 16 2005
%E A102186 More terms from _Emeric Deutsch_, Mar 28 2005
%E A102186 Name expanded by _N. J. A. Sloane_, Nov 21 2015