cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102189 Array of multinomial numbers (row reversed order of table A036039).

This page as a plain text file.
%I A102189 #38 Apr 01 2025 03:38:30
%S A102189 1,1,1,1,3,2,1,6,3,8,6,1,10,15,20,20,30,24,1,15,45,40,15,120,90,40,90,
%T A102189 144,120,1,21,105,70,105,420,210,210,280,630,504,420,504,840,720,1,28,
%U A102189 210,112,420,1120,420,105,1680,1120,2520,1344,1120,1260,3360,4032,3360
%N A102189 Array of multinomial numbers (row reversed order of table A036039).
%C A102189 See Abramowitz and Stegun, Handbook, p. 831, column labeled "M_2", read backwards.
%C A102189 The sequence of row lengths is [1,2,3,5,7,11,15,...] = A000041(n), n>=1 (partition numbers).
%C A102189 Row n of this array gives the coefficients of the cycle index polynomial n!*Z(S_n) for the symmetric group S_n. For instance, Z(S_4)= (x[1]^4 + 6*x[1]^2*x[2] + 3*x[2]^2 + 8*x[1]*x[3] + 6*x[4])/4!. The partitions of 4 appear here in the reversed Abramowitz-Stegun order.
%C A102189 See the W. Lang link "Solution of Newton's Identities" and the Note added Jun 06 2007 in the link "More rows and S_n cycle index polynomials" for the appearance of the signed array. - _Wolfdieter Lang_, Aug 01 2013
%C A102189 Multiplying the values of row n by the corresponding values in row n of A110141, one obtains n!. - _Jaimal Ichharam_, Aug 06 2015
%H A102189 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.
%H A102189 Wolfdieter Lang, <a href="/A102189/a102189.pdf">More rows and S_n cycle index polynomials.</a>
%H A102189 Wolfdieter Lang, <a href="/A102189/a102189_1.pdf">Solution of Newton's Identities.</a>
%H A102189 Andrei Vieru, <a href="https://arxiv.org/abs/1601.04703">Analytic renormalization of multiple zeta functions. Geometry and combinatorics of generalized Euler reflection formula for MZV</a>, arXiv preprint arXiv:1601.04703 [math.NT], 2016.
%e A102189 Triangle begins:
%e A102189   [1];
%e A102189   [1,1];
%e A102189   [1,3,2];
%e A102189   [1,6,3,8,6];
%e A102189   [1,10,15,20,20,30,24];
%e A102189   ...
%t A102189 aspartitions[n_] := Reverse /@ Sort[Sort /@ IntegerPartitions[n]]; ascycleclasses[n_Integer] := n!/(Times @@ #)& /@ ((#! Range[n]^#)& /@ Function[par, Count[par, #]& /@ Range[n]] /@ aspartitions[n]); row[n_] := ascycleclasses[n] // Reverse; Table[row[n], {n, 1, 8}] // Flatten (* _Jean-François Alcover_, Feb 04 2014, after A036039 and _Wouter Meeussen_ *)
%Y A102189 Cf. A000041, A036039, A110141.
%K A102189 nonn,easy,tabf
%O A102189 1,5
%A A102189 _Wolfdieter Lang_, Feb 15 2005