cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102230 Triangle, read by rows, where each column equals the convolution of A032349 with the prior column, starting with column 0 equal to A032349 shift right.

This page as a plain text file.
%I A102230 #8 Jul 19 2024 19:05:11
%S A102230 1,1,1,4,5,1,24,32,9,1,172,236,76,13,1,1360,1896,656,136,17,1,11444,
%T A102230 16116,5828,1348,212,21,1,100520,142544,53112,13184,2376,304,25,1,
%U A102230 911068,1298524,494364,128924,25436,3804,412,29,1,8457504,12100952
%N A102230 Triangle, read by rows, where each column equals the convolution of A032349 with the prior column, starting with column 0 equal to A032349 shift right.
%C A102230 Row sums equal A027307; the self-convolution of the row sums form A032349. Column 0 equals A032349 shift right. Column 1 is A102231. This triangle is a variant of A100326.
%F A102230 G.f.: A(x, y) = (1+x*F(x))/(1-x*y*F(x)) where F(x) is the g.f. of A032349 and satisfies F(x) = (1+x*F(x))^2/(1-x*F(x))^2.
%e A102230 This triangle is generated by the recurrence:
%e A102230 T(n,k) = Sum_{i=0..n-k} T(i+1,0)*T(n-i-1,k-1) for n>k>0,
%e A102230 T(n,0) = Sum_{i=0..n-1} (2*i+1)*T(n-1,i) for n>0, with T(0,0)=1.
%e A102230 Rows begin:
%e A102230 [1],
%e A102230 [1,1],
%e A102230 [4,5,1],
%e A102230 [24,32,9,1],
%e A102230 [172,236,76,13,1],
%e A102230 [1360,1896,656,136,17,1],
%e A102230 [11444,16116,5828,1348,212,21,1],
%e A102230 [100520,142544,53112,13184,2376,304,25,1],...
%e A102230 Column 0 is formed from the partial sums of the prior row
%e A102230 after a term-by-term product with the odd numbers:
%e A102230 T(2,0) = 1*T(1,0) + 3*T(1,1) = 1*1 + 3*1 = 4.
%e A102230 T(3,0) = 1*T(2,0) + 3*T(2,1) + 5*T(2,2) = 1*4 + 3*5 + 5*1 = 24.
%o A102230 (PARI) {T(n,k)=if(n<k||k<0,0,if(n==0,1,if(k==0, sum(i=0,n-1,(2*i+1)*T(n-1,i)), sum(i=0,n-k,T(i+1,0)*T(n-i-1,k-1)));))}
%Y A102230 Cf. A032349, A027307, A102231, A100326.
%K A102230 nonn,tabl
%O A102230 0,4
%A A102230 _Paul D. Hanna_, Jan 01 2005