A102262 Numerators of probabilities in gift exchange problem with n people.
0, 1, 5, 19, 203, 4343, 63853, 58129, 160127, 8885501, 1500518539, 404156337271, 16040576541971, 1694200740145637, 24047240650458731, 22823917472900053, 2511014355032164231, 143734030512459889193, 49611557898193759558813, 950601970122346247310883
Offset: 2
Examples
p(2) through p(10) are 0, 1/4, 5/36, 19/144, 203/1800, 4343/43200, 63853/705600, 58129/705600, 160127/2116800.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 2..389
- Math Forum at Drexel, A variant on the "Secret Santa"
Programs
-
Magma
N:=21; a:=[]; row:=[]; T:=[]; for n in [2..N] do row[n-1]:=0; T[n]:=row; T[n][1]:=(-1)^(n-1)*Factorial(n-1) div 2; for i in [2..n-2] do T[n][i]:=(n-2)*i^2/(i-1)*T[n-1][i-1]-(n-i-2)*T[n-1][i]; end for; p:=0; for i in [1..n-2] do p+:=T[n][i]/Factorial(n-1)^2; end for; a[#a+1]:=Numerator(p); end for; a; // Jon E. Schoenfield, Dec 10 2021
Formula
From Jon E. Schoenfield, Sep 30 2006: (Start)
p(n) = Sum_{i=1..n-2} t(n,i)/(n-1)!^2
where
t(n,i) = (n-2)*i^2/(i-1)*t(n-1,i-1) - (n-i-2)*t(n-1,i) for 1 < i < n-1;
t(n,1) = (-1)^(n-1)*(n-1)!/2 for i = 1 and n > 2;
t(n,i) = 0 otherwise.
(End)
Based on the values of p(n) for n <= 1000, it seems plausible that, as n increases, p(n) approaches 1/(n + log(n) + EulerGamma), where EulerGamma = 0.5772156649015... (the Euler-Mascheroni constant). - Jon E. Schoenfield, Dec 11 2021
Extensions
More terms from Jon E. Schoenfield, Sep 30 2006
Comments