This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102273 #27 Sep 08 2022 08:45:16 %S A102273 11,23,71,107,179,191,239,263,347,359,431,443,491,599,659,683,743,827, %T A102273 863,911,947,1019,1031,1103,1163,1187,1283,1367,1439,1451,1499,1523, %U A102273 1583,1607,1619,1667,1787,1871,2003,2027,2039,2087 %N A102273 Primes p such that Q(sqrt(-21p)) has genus characters chi_{-3} = -1, chi_{-7} = +1. %C A102273 The 2-class number of these fields is always 4. %C A102273 Primes of the form 2x^2 - 2xy + 11y^2 with x nonnegative and y positive. - _T. D. Noe_, May 08 2005 %C A102273 Also primes of the forms 8x^2 + 4xy + 11y^2 and 11x^2 + 2xy + 23y^2. See A140633. - _T. D. Noe_, May 19 2008 %C A102273 The discriminant of positive definite binary quadratic form (2,2,11) is -84. - _Hugo Pfoertner_, Jul 14 2019 %H A102273 Vincenzo Librandi, <a href="/A102273/b102273.txt">Table of n, a(n) for n = 1..1000</a> %H A102273 H. Cohn and J. C. Lagarias, <a href="http://dx.doi.org/10.1090/S0025-5718-1983-0717716-8">On the existence of fields governing the 2-invariants of the classgroup of Q(sqrt{dp}) as p varies</a>, Math. Comp. 41 (1983), 711-730. %H A102273 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A102273 The primes are congruent to {2, 11, 23, 71} (mod 84). - _T. D. Noe_, May 02 2008 %t A102273 f[x_,y_]:=2*x^2+2*x*y+11*y^2; lst={};Do[Do[p=f[x,y];If[PrimeQ[p],AppendTo[lst,p]],{y,-5!,6!}],{x,-5!,6!}];Take[Union[lst],5! ] (* _Vladimir Joseph Stephan Orlovsky_, Jul 06 2009 *) %o A102273 (Magma) [p: p in PrimesUpTo(3000) | p mod 84 in [2, 11, 23, 71]]; // _Vincenzo Librandi_, Jul 19 2012 %Y A102273 Cf. A102269-A102275. %Y A102273 Cf. A139827. %K A102273 nonn %O A102273 1,1 %A A102273 _N. J. A. Sloane_, Feb 19 2005