cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102289 Total number of odd lists in all sets of lists, cf. A000262.

This page as a plain text file.
%I A102289 #14 Jan 13 2019 13:46:07
%S A102289 0,1,2,15,76,665,5286,56287,597080,7601841,99702730,1484554511,
%T A102289 23049638052,393702612745,7036703742446,135702811542495,
%U A102289 2737989749177776,58848546456947297,1321063959370833810,31310238786268648591,773291778432688011260,20031956775840631151481
%N A102289 Total number of odd lists in all sets of lists, cf. A000262.
%H A102289 Alois P. Heinz, <a href="/A102289/b102289.txt">Table of n, a(n) for n = 0..444</a>
%F A102289 E.g.f.: x/(1-x^2)*exp(x/(1-x)).
%F A102289 a(n) = n*a(n-1) + n^2*a(n-2) - (n-2)^2*n*a(n-3). - _Vaclav Kotesovec_, Sep 29 2013
%F A102289 a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 + 7/(48*sqrt(n))). - _Vaclav Kotesovec_, Sep 29 2013
%p A102289 G:=(x/(1-x^2))*exp(x/(1-x)): Gser:=series(G,x=0,25): seq(n!*coeff(Gser,x^n),n=1..22); # _Emeric Deutsch_
%p A102289 # second Maple program:
%p A102289 b:= proc(n) option remember; `if`(n=0, [1, 0], add(
%p A102289       (p-> p+`if`(j::odd, [0, p[1]], 0))(b(n-j)*
%p A102289         binomial(n-1, j-1)*j!), j=1..n))
%p A102289     end:
%p A102289 a:= n-> b(n, 0)[2]:
%p A102289 seq(a(n), n=0..25);  # _Alois P. Heinz_, May 10 2016
%t A102289 Rest[CoefficientList[Series[x/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* _Vaclav Kotesovec_, Sep 29 2013 *)
%t A102289 nxt[{n_,a_,b_,c_}]:={n+1,b,c,(n+1)*c+(n+1)^2*b-(n-1)^2 (n+1)*a}; NestList[ nxt,{2,0,1,2},30][[All,2]] (* _Harvey P. Dale_, Jan 13 2019 *)
%Y A102289 Cf. A052852, A066897, A066898, A059570, A059570, A081358, A092691.
%K A102289 easy,nonn
%O A102289 0,3
%A A102289 _Vladeta Jovovic_, Feb 19 2005
%E A102289 More terms from _Emeric Deutsch_, Jun 24 2005
%E A102289 a(0)=0 pepended by _Alois P. Heinz_, May 10 2016