This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102312 #43 Jan 05 2025 19:51:38 %S A102312 0,5,55,610,6765,75025,832040,9227465,102334155,1134903170, %T A102312 12586269025,139583862445,1548008755920,17167680177565, %U A102312 190392490709135,2111485077978050,23416728348467685,259695496911122585,2880067194370816120,31940434634990099905 %N A102312 a(n) = Fibonacci(5*n). %H A102312 Colin Barker, <a href="/A102312/b102312.txt">Table of n, a(n) for n = 0..950</a> %H A102312 Michael D.Hirschhorn, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/51-3/HirschhornNaiveProof.pdf">A Naive Proof that F5n = 0 (mod 5)</a>, Fib. Q. 51(3), 2013, 256-258. %H A102312 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A102312 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,1). %F A102312 G.f.: 5*x/(1-11*x-x^2). %F A102312 a(n) = A000045(5*n) = 5*A049666(n). %F A102312 a(n) = Fibonacci(2*n)*Lucas(3*n)+Fibonacci(n). Lucas =A000032(n), Fibonacci=A000045(n). - _Gary Detlefs_, Dec 22 2012 %F A102312 a(n) = (-((11 - 5*sqrt(5))/2)^n + ((11+5*sqrt(5))/2)^n)/sqrt(5). - _Colin Barker_, Nov 10 2016 %F A102312 a(n) = 11*a(n-1)+a(n-2). - _Mike Speciner_, Aug 20 2024 %p A102312 seq(combinat:-fibonacci(5*n), n=0..100); # _Robert Israel_, Dec 12 2014 %t A102312 Table[ Fibonacci[5n], {n, 0, 17}] (* _Robert G. Wilson v_, Jan 09 2005 *) %o A102312 (Sage) [fibonacci(5*n) for n in range(0, 18)] # _Zerinvary Lajos_, May 15 2009 %o A102312 (Magma) [Fibonacci(5*n): n in [0..100]]; // _Vincenzo Librandi_, Apr 17 2011 %o A102312 (PARI) vector(18,n,fibonacci(5*n)) \\ _Edward Jiang_, Dec 11 2014 %o A102312 (PARI) concat(0, Vec(5*x/(1-11*x-x^2) + O(x^30))) \\ _Colin Barker_, Nov 10 2016 %Y A102312 Essentially the fifth column of array A102310. %Y A102312 Cf. A049666. [_Zerinvary Lajos_, May 15 2009] %Y A102312 Cf. A138134 (partial sums). %K A102312 nonn,easy %O A102312 0,2 %A A102312 _Ralf Stephan_, Jan 06 2005