cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102318 A mean binomial transform of the Catalan numbers.

Original entry on oeis.org

1, 1, 3, 8, 27, 97, 373, 1493, 6163, 26027, 111897, 488006, 2153429, 9596199, 43121211, 195165576, 888861555, 4070582971, 18732710281, 86584519280, 401776434017, 1870983991035, 8740907398527, 40956401225597
Offset: 0

Views

Author

Paul Barry, Jan 04 2005

Keywords

Comments

Average of binomial and inverse binomial transforms of the Catalan numbers A000108.

Crossrefs

Formula

G.f.: (2-sqrt((1-3x)/(1+x))-sqrt((1-5x)/(1-x)))/(4x);
a(n)=sum{k=0..floor(n/2), binomial(n, 2k)C(n-2k)};
a(n)=sum{k=0..n, binomial(n, k)C(k)(1+(-1)^(n-k))/2}.
Conjecture: -(n-1)*(n+1)*a(n) +2*(5*n^2-9*n+1)*a(n-1) +2*(-15*n^2+58*n-49)*a(n-2) +2*(10*n^2-76*n+123)*a(n-3) +(31*n-55)*(n-3)*a(n-4) -30*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 08 2016
Conjecture: +(3*n-10)*(n-1)*(n+1)*a(n) +2*(-12*n^3+58*n^2-67*n+10)*a(n-1) +2*(21*n^3-136*n^2+289*n-196)*a(n-2) +2*(n-2)*(12*n^2-46*n+27)*a(n-3) -15*(n-2)*(n-3)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Jun 08 2016
a(n) ~ 5^(n + 3/2) / (16 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 30 2017