cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102327 Primes p such that the largest prime factor of p^5 + 1 is less than p.

This page as a plain text file.
%I A102327 #22 Jun 19 2024 01:54:42
%S A102327 1753,2357,7103,9749,13441,16453,21467,22739,25153,28409,29059,33247,
%T A102327 33347,36781,42853,51427,57751,58453,62347,65777,66593,69119,72923,
%U A102327 78643,80407,83591,85619,89909,91411,99409,101209,101363,113171,124337
%N A102327 Primes p such that the largest prime factor of p^5 + 1 is less than p.
%H A102327 Amiram Eldar, <a href="/A102327/b102327.txt">Table of n, a(n) for n = 1..10000</a>
%F A102327 Solutions to {A006530(1 + p^5) < p} where p is a prime.
%e A102327 p = 1753, 1 + p^5 = 16554252702583994 = 2*41*151*691*877*1361*1621, so the largest prime factor is 1621 < p = 1753.
%t A102327 Select[Prime[Range[15000]], Max[PrimeFactorList[1 + #^5]] < # &] (* _Ray Chandler_, Jan 08 2005 *)
%t A102327 Select[Prime[Range[12000]],FactorInteger[#^5+1][[-1,1]]<#&]  (* _Harvey P. Dale_, Mar 14 2011 *)
%o A102327 (PARI) isok(p)= isprime(p) && (vecmax(factor(p^5+1)[,1]) < p); \\ _Michel Marcus_, Jul 11 2018
%Y A102327 Cf. A000040, A006530, A065091, A073501.
%K A102327 nonn
%O A102327 1,1
%A A102327 _Labos Elemer_, Jan 05 2005
%E A102327 Extended by _Ray Chandler_, Jan 08 2005