This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102330 #26 May 14 2025 01:18:49 %S A102330 2,2,3,3,5,11,2,3,5,7,3,5,7,11,17,2,3,5,7,11,13,3,5,7,11,13,17,23,2,3, %T A102330 5,7,11,13,19,23,3,5,7,11,13,17,19,23,29,2,3,5,7,11,13,17,19,23,31,3, %U A102330 5,7,11,13,17,19,23,29,31,41,2,3,5,7,11,13,17,19,23,29,31,37,3,5,7,11,13,17 %N A102330 Triangle read by rows: n-th row consists of the lexicographically earliest set of n distinct primes whose sum is A068873(n). %H A102330 David A. Corneth, <a href="/A102330/b102330.txt">Table of n, a(n) for n = 1..10011</a> (first 141 rows flattened, first 300 terms from Jean-Francois Alcover, terms 301..2485 from Robert Israel) %H A102330 Robert Israel, <a href="/A102330/b102330_1.txt">Table of n, a(n) for n = 1..2485</a> (rows 1 to 70, flattened), replacing incorrect b-file from Jean-Francois Alcover %e A102330 Triangle begins: %e A102330 2 %e A102330 2,3 %e A102330 3,5,11 %e A102330 2,3,5,7 %e A102330 3,5,7,11,17 %e A102330 2,3,5,7,11,13 %e A102330 3,5,7,11,13,17,23 %e A102330 2,3,5,7,11,13,19,23 %e A102330 3,5,7,11,13,17,19,23,29 %e A102330 2,3,5,7,11,13,17,19,23,31 %e A102330 3,5,7,11,13,17,19,23,29,31,41 %e A102330 2,3,5,7,11,13,17,19,23,29,31,37 %e A102330 3,5,7,11,13,17,19,23,29,31,37,41,47 %e A102330 2,3,5,7,11,13,17,19,23,29,31,37,41,43 %e A102330 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53 %p A102330 g:= proc(n,k,m) option remember; # lex earliest set of k distinct primes > m with sum n %p A102330 local q,v; %p A102330 if k = 1 then %p A102330 if isprime(n) and n > m then return [n] else return NULL fi %p A102330 fi; %p A102330 q:= m; %p A102330 do %p A102330 q:= nextprime(q); %p A102330 if n < k*q then return NULL fi; %p A102330 v:= procname(n-q,k-1,q); %p A102330 if v <> NULL then return [q,op(v)] fi %p A102330 od %p A102330 end proc: %p A102330 f:= proc(k) %p A102330 local p,i,v; %p A102330 p:= add(ithprime(i),i=1..k)-1; %p A102330 do %p A102330 p:= nextprime(p); %p A102330 v:= g(p,k,0); %p A102330 if v <> NULL then return v fi %p A102330 od %p A102330 end proc: %p A102330 for k from 1 to 30 do %p A102330 f(k) %p A102330 od; # _Robert Israel_, May 12 2025 %t A102330 (* Computation verified with A068873. *) %t A102330 row[n_] := Module[{s, m}, s = Select[{#, Total[#]}& /@ Subsets[ Prime[ Range[n+4]], {n}], PrimeQ[#[[2]]]&]; m = MinimalBy[s, #[[2]]&, 1]; If[s != {}, Return[m[[1, 1]]]]]; %t A102330 Array[row, 49] // Flatten (* _Jean-François Alcover_, Apr 23 2020 *) %Y A102330 By definition, row sums are A068873. %K A102330 easy,nonn,tabl %O A102330 1,1 %A A102330 _Giovanni Teofilatto_, Jan 30 2005 %E A102330 Edited, corrected and extended by _Ray Chandler_, Feb 02 2005 %E A102330 Edited by _N. J. A. Sloane_, May 07 2014