This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102335 #12 Feb 18 2025 04:04:04 %S A102335 12454333,21228553,25131193,38589673,41426353,46254253,56564623, %T A102335 60498133,61151863,96691213,158497153,169760713,182960473,201513133, %U A102335 226086283,236031463,253806913,290686483,305472373,344550643,369110983,380973253,421335883,445537333,461955763 %N A102335 Initial terms of sextuplets of consecutive primes as follows: {p, p+16, p+24, p+40, p+48, p+64}. The corresponding difference-pattern is {16,8,16,8,16}. %C A102335 A generalization of A022008. The generalized pattern of consecutive prime-differences is {6a+4, 6b+2, 6c+4, 6d+2, 6e+4} with a = c = e = 2, b = d = 1. %H A102335 Amiram Eldar, <a href="/A102335/b102335.txt">Table of n, a(n) for n = 1..10000</a> %F A102335 a(n) == 73 (mod 210). - _Amiram Eldar_, Feb 18 2025 %t A102335 Transpose[Select[Partition[Prime[Range[20000000]],6,1],Differences[#] == {16,8,16,8,16}&]][[1]] (* _Harvey P. Dale_, Nov 08 2011 *) %o A102335 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11); forprime(p6 = 13, lim, if(p2 - p1 == 16 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 8 && p6 - p5 == 16, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5; p5 = p6);} \\ _Amiram Eldar_, Feb 18 2025 %Y A102335 Cf. A001223, A022008, A052162, A052163, A052164, A052165, A052166, A052167, A052168, A052378, A067140, A067141, A102332, A102333, A102334. %K A102335 nonn %O A102335 1,1 %A A102335 _Labos Elemer_, Jan 06 2005