A102336 Initial members of quintuplets (p, p+4, p+12, p+28, p+60) of consecutive primes with the corresponding difference pattern is {4,8,16,32}.
1197739, 2496409, 2692549, 2962489, 3195679, 5723479, 6824899, 7706059, 8056039, 8337319, 10132609, 10583269, 11739589, 12167509, 12674659, 13007959, 13699459, 14148049, 14252929, 14702839, 15726019, 16694539, 17115949, 17282299, 17350159, 17584729, 18065389, 18097609
Offset: 1
Keywords
Examples
1197739 is a prime, followed by (1197743, 1197751, 1197767, 1197799) with consecutive prime difference pattern: {4,8,16,32}.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Partition[Prime[Range[10^6]], 5, 1], Differences[#] == 2^Range[2, 5] &][[;;, 1]] (* Amiram Eldar, Feb 18 2025 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 32, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 18 2025
Formula
a(n) == 19 (mod 30). - Amiram Eldar, Feb 18 2025
Comments