cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102356 Problem 66 in Knuth's Art of Computer Programming, vol. 4, section 7.2.1.5 asks which integer partition of n produces the most set partitions. The n-th term of this sequence is the number of set partitions produced by that integer partition.

This page as a plain text file.
%I A102356 #27 Oct 03 2014 18:23:34
%S A102356 1,1,1,3,6,15,60,210,840,3780,12600,69300,415800,2702700,12612600,
%T A102356 94594500,756756000,4288284000,38594556000,244432188000,1833241410000,
%U A102356 17110253160000,141159588570000,1298668214844000,10389345718752000,108222351237000000,1125512452864800000
%N A102356 Problem 66 in Knuth's Art of Computer Programming, vol. 4, section 7.2.1.5 asks which integer partition of n produces the most set partitions. The n-th term of this sequence is the number of set partitions produced by that integer partition.
%C A102356 a(n) is the maximum value in row n of A080575.
%H A102356 Alois P. Heinz, <a href="/A102356/b102356.txt">Table of n, a(n) for n = 0..300</a>
%H A102356 D. E. Knuth, <a href="http://www-cs-faculty.stanford.edu/~knuth/taocp.html#vol4">The Art of Computer Programming, vol. 4</a>. See Section 7.2.1.5, Problem 66, pages 439 and 778.
%e A102356 a(4) = 6 because there are 6 set partitions of type {2,1,1}, namely 12/3/4, 13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34; all other integer partitions of 4 produce fewer set partitions.
%p A102356 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A102356        max(seq(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i))))
%p A102356     end:
%p A102356 a:= n-> b(n, n):
%p A102356 seq(a(n), n=0..40);  # _Alois P. Heinz_, Apr 13 2012
%t A102356 sp[l_] := (Total[l])!/(Apply[Times, Map[ #! &, l]]*Apply[Times, Map[Count[l, # ]! &, Range[Max[l]]]]) a[n_] := Max[Map[sp, Partitions[n]]]
%t A102356 b[0, _] = 1; b[_, _?NonPositive] = 0; b[n_, i_] := b[n, i] = Max[Table[ b[n - i*j, i-1]*n!/i!^j/(n - i*j)!/j!, {j, 0, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jan 24 2014, after _Alois P. Heinz_ *)
%Y A102356 Cf. A080575, A102456.
%K A102356 nonn
%O A102356 0,4
%A A102356 _Dan Drake_, Feb 21 2005
%E A102356 More terms from _Alois P. Heinz_, Oct 13 2011.
%E A102356 Typo in definition corrected by Klaus Leeb, Apr 30 2014.