This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102356 #27 Oct 03 2014 18:23:34 %S A102356 1,1,1,3,6,15,60,210,840,3780,12600,69300,415800,2702700,12612600, %T A102356 94594500,756756000,4288284000,38594556000,244432188000,1833241410000, %U A102356 17110253160000,141159588570000,1298668214844000,10389345718752000,108222351237000000,1125512452864800000 %N A102356 Problem 66 in Knuth's Art of Computer Programming, vol. 4, section 7.2.1.5 asks which integer partition of n produces the most set partitions. The n-th term of this sequence is the number of set partitions produced by that integer partition. %C A102356 a(n) is the maximum value in row n of A080575. %H A102356 Alois P. Heinz, <a href="/A102356/b102356.txt">Table of n, a(n) for n = 0..300</a> %H A102356 D. E. Knuth, <a href="http://www-cs-faculty.stanford.edu/~knuth/taocp.html#vol4">The Art of Computer Programming, vol. 4</a>. See Section 7.2.1.5, Problem 66, pages 439 and 778. %e A102356 a(4) = 6 because there are 6 set partitions of type {2,1,1}, namely 12/3/4, 13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34; all other integer partitions of 4 produce fewer set partitions. %p A102356 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A102356 max(seq(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))) %p A102356 end: %p A102356 a:= n-> b(n, n): %p A102356 seq(a(n), n=0..40); # _Alois P. Heinz_, Apr 13 2012 %t A102356 sp[l_] := (Total[l])!/(Apply[Times, Map[ #! &, l]]*Apply[Times, Map[Count[l, # ]! &, Range[Max[l]]]]) a[n_] := Max[Map[sp, Partitions[n]]] %t A102356 b[0, _] = 1; b[_, _?NonPositive] = 0; b[n_, i_] := b[n, i] = Max[Table[ b[n - i*j, i-1]*n!/i!^j/(n - i*j)!/j!, {j, 0, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jan 24 2014, after _Alois P. Heinz_ *) %Y A102356 Cf. A080575, A102456. %K A102356 nonn %O A102356 0,4 %A A102356 _Dan Drake_, Feb 21 2005 %E A102356 More terms from _Alois P. Heinz_, Oct 13 2011. %E A102356 Typo in definition corrected by Klaus Leeb, Apr 30 2014.