This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A102364 #20 Sep 29 2018 18:44:01 %S A102364 0,0,1,2,1,3,2,2,4,3,3,3,2,5,4,4,4,3,4,3,3,6,5,5,5,4,5,4,4,5,4,4,4,3, %T A102364 7,6,6,6,5,6,5,5,6,5,5,5,4,6,5,5,5,4,5,4,4,8,7,7,7,6,7,6,6,7,6,6,6,5, %U A102364 7,6,6,6,5,6,5,5,7,6,6,6,5,6,5,5,6,5,5 %N A102364 Number of terms in Fibonacci sequence less than n not used in Zeckendorf representation of n (the Zeckendorf representation of n is a sum of non-consecutive distinct Fibonacci numbers). %C A102364 Number of 0's in Zeckendorf-binary representation of n. For example, the Zeckendorf representation of 12 is 8+3+1, which is 10101 in binary notation. %C A102364 For n > 0: number of zeros in n-th row of A213676, or, number of zeros in n-th row of A189920. - _Reinhard Zumkeller_, Mar 10 2013 %D A102364 E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972. %H A102364 Alois P. Heinz, <a href="/A102364/b102364.txt">Table of n, a(n) for n = 0..10946</a> %H A102364 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibGen.html">General Fibonacci Series</a> %p A102364 F:= combinat[fibonacci]: %p A102364 b:= proc(n) option remember; local j; %p A102364 if n=0 then 0 %p A102364 else for j from 2 while F(j+1)<=n do od; %p A102364 b(n-F(j))+2^(j-2) %p A102364 fi %p A102364 end: %p A102364 a:= proc(n) local c,m; %p A102364 c, m:= 0, b(n); %p A102364 while m>0 do c:= c +1 -irem(m, 2, 'm'); %p A102364 od; c %p A102364 end: %p A102364 seq(a(n), n=0..150); # _Alois P. Heinz_, May 18 2012 %t A102364 F = Fibonacci; b[n_] := b[n] = Module[{j}, If[n==0, 0, For[j=2, F[j+1] <= n, j++]; b[n-F[j]]+2^(j-2)]]; a[n_] := Module[{c, m}, {c, m} = {0, b[n]}; While[m>0, c = c + 1 - Mod[m, 2]; m = Floor[m/2]]; c]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jan 09 2016, after _Alois P. Heinz_ *) %o A102364 (Haskell) %o A102364 a102364 0 = 0 %o A102364 a102364 n = length $ filter (== 0) $ a213676_row n %o A102364 -- _Reinhard Zumkeller_, Mar 10 2013 %Y A102364 Cf. A007895, A072649. %K A102364 nonn %O A102364 0,4 %A A102364 _Casey Mongoven_, Feb 22 2005